To highlight possible correlations of type 2 diabetes mellitus (T2DM) with microscopic / macroscopic characteristics of colorectal cancer tissues, along with the expression of Ten-Eleven Translocation 2 (TET2) and glutathione-S-transferase pi (GST-pi) proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3897/folmed.66.e122713 | DOI Listing |
Molecules
December 2024
State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
DNA methylation and demethylation are key epigenetic events that regulate gene expression and cell fate. DNA demethylation via oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) is typically mediated by TET (ten-eleven translocation) enzymes. The 5hmC modification is considered an intermediate state of DNA demethylation; it is particularly prevalent in the brain and is believed to play a role in the development of many cell types in the brain.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
December 2024
College of Veterinary Medicine, Southwest University, Chongqing 402460, China.
Ten-eleven translocation 1 (TET1) protein is an alpha-ketoglutaric acid (α-KG) and Fe-dependent dioxygenase. It plays a role in the active demethylation of DNA by hydroxylation of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC). Ten-eleven translocation 1 (TET1) protein is involved in maintaining genome methylation homeostasis and epigenetic regulation.
View Article and Find Full Text PDFAdv Biomed Res
November 2024
Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Acquisition of stem-like properties requires overcoming the epigenetic barrier of differentiation and re-expression of several genes involved in stemness and the cell cycle. DNA methylation is the classic epigenetic mechanism for de/differentiation. The writers and erasers of DNA methylation are not site-specific enzymes for altering specific gene methylation.
View Article and Find Full Text PDFBiomol Ther (Seoul)
January 2025
Department of Biochemistry, College of Medicine, and Jeju Natural Medicine Research Center, Jeju National University, Jeju 63243, Republic of Korea.
γ-Radiation resistance is a major obstacle to the success of radiotherapy in colorectal cancer. Antioxidant-related factors contribute to resistance to radiation therapy and, therefore, are targets for improving the therapeutic response. In this study, we evaluated the molecular mechanisms underlying γ-radiation resistance using the colorectal cancer cell line SNUC5 and γ-radiation-resistant variant SNUC5/RR, including analyses of the role of nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor that regulates antioxidant enzymes, and related epigenetic regulators.
View Article and Find Full Text PDFJ Biochem
December 2024
Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
Since low oxygen conditions below physiological levels, hypoxia, is associated with various diseases, it is crucial to understand the molecular basis behind cellular response to hypoxia. Hypoxia-inducible factors (HIFs) have been revealed to primarily orchestrate the hypoxia response at the transcription level and have continuously attracted great attention over the past three decades. In addition to these hypoxia-responsive effector proteins, 2-oxoglutarate-dependent dioxygenase (2-OGDD) superfamily including prolyl-4-hydroxylase domain-containing proteins (PHDs) and factor inhibiting HIF-1 (FIH-1) have attracted even greater attention in recent years as factors that act as direct oxygen sensors due to their necessity of oxygen for the regulation of the expression and activity of the regulatory subunit of HIFs (HIF-α).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!