AI Article Synopsis

  • The study compares the effectiveness of 0.55 T MRI scanners to traditional 3.0 T MRIs in reducing metal artifacts around orthopedic implants.
  • Results showed that metal artifacts were significantly smaller with the 0.55 T MRI, especially using the SEMAC sequence, and that it provided better visualization of anatomical structures.
  • The authors conclude that the 0.55 T MRI offers substantial advantages, but further clinical research is needed to confirm its benefits for patients.

Article Abstract

Objective: Novel 0.55 MRI scanners have the potential to reduce metal artifacts around orthopedic implants. The purpose of this study was to compare metal artifact size and depiction of anatomy between 0.55 T and 3.0 T MRI in a biophantom.

Materials And Methods: Steel and titanium screws were implanted in 12 porcine knee specimens and imaging at 0.55 T and 3 T MRI was performed using the following sequences: turbo spin-echo (TSE), TSE with view angle tilting (VAT), and slice encoding for metal artifact correction (SEMAC) with proton-density (PD) and T2-weighted short-tau inversion-recovery (T2w-STIR) contrasts. Artifacts were measured, and visualization of anatomy (cartilage, bone, growth plates, cruciate ligaments) was assessed and compared between groups.

Results: Metal artifacts were significantly smaller at 0.55 T. The smallest artifact sizes were achieved with SEMAC at 0.55 T for both PD and T2w-STIR sequences; corresponding relative size reductions vs. 3.0 T were 78.7% and 79.4% (stainless steel) and 45.3% and 1.4% (titanium). Depiction of anatomical structures was superior at 0.55 T.

Conclusion: Substantial reduction of artifact size resulting in superior depiction of anatomical structures is possible on novel 0.55 T MRI systems. Further clinical studies are required to elucidate patient-relevant advantages.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00256-024-04809-xDOI Listing

Publication Analysis

Top Keywords

metal artifacts
8
metal artifact
8
artifact size
8
depiction anatomical
8
anatomical structures
8
mri
5
055 t
5
improved metal
4
metal suppression
4
suppression generation
4

Similar Publications

This study aimed to evaluate the efficacy of the single-energy metal artifact reduction (SEMAR) algorithm in reducing metal artifacts and enhancing image quality in contrast-enhanced computed tomography (CT) for patients undergoing endovascular aneurysm repair (EVAR) with coil embolization. Thirty-eight patients (mean age 81.0 ± 6 years; 31 men, 7 women) who underwent contrast-enhanced CT following EVAR and internal iliac artery coil embolization between September 2022 and May 2023 were retrospectively analyzed.

View Article and Find Full Text PDF

Coil embolization of cerebral aneurysms often encounters challenges in achieving complete filling of the aneurysm sac due to complex shapes and hemodynamic factors, frequently resulting in the formation of a residual cavity (RC) at the aneurysm neck. The hemodynamic mechanisms underlying RC formation and growth, however, remain poorly understood. Computational fluid dynamics (CFD) analysis, combined with silent MRA free from contrast agents and metal artifacts, offers a promising approach to elucidate these mechanisms, potentially enhancing the clinical management of cerebral aneurysms post-coiling.

View Article and Find Full Text PDF

Introduction: In this article, we report a unique case of head-stem dissociation in a metal-on-metal total hip replacement which utilized an Exeter stem. Although metallosis and pseudotumor formation are well recognized complications of metal-on-metal hip replacements, head-stem dissociations are rare with few being reported in literature. To the best of our knowledge, this case report is the first to report this occurrence in an Exeter stem.

View Article and Find Full Text PDF

Ultrasound Examination for Cement Extrusion After Uni-Compartmental Knee Replacement.

Diagnostics (Basel)

January 2025

Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 10845, Taiwan.

A 66-year-old woman presented with persistent knee effusion three months after undergoing a cemented medial uni-compartmental knee replacement. She was afebrile and able to walk with a stick. Physical examination revealed moderate effusion.

View Article and Find Full Text PDF

Convergent-Diffusion Denoising Model for multi-scenario CT Image Reconstruction.

Comput Med Imaging Graph

January 2025

The Department of Computer and Data Science, Case Western Reserve University, Cleveland, OH, USA; The Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!