Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pancreatic β-cell damage mediated by apoptosis is believed to be a main trigger of type 1 diabetes mellitus (T1DM), which is proposed as an organ-specific autoimmune disease mediated by T cells. Nonetheless, the fundamental origins of T1DM remain uncertain. Here, we illustrate that an increase in PLAGL1 expression induces β-cell apoptosis, as evidenced by mitochondrial membrane impairment and nucleolar degradation. The gene expression levels from cDNA samples were determined using qRT-PCR method. Western blot and Co-immunoprecipitation were applied for protein expression and interactions, respectively. Flow cytometry and TUNEL assay were used to detect pancreatic β cell apoptosis. Female NOD/LtJ mice with recent-onset T1DM has been used in in vivo studies. Glucose-stimulated insulin secretion (GSIS) and glucose tolerance test (GTT) method is used for islet function assessment. Haematoxylin and Eosin (H&E) and Immunohistochemistry (IHC) were performed to evalute histological improvement of islet beta. Subsequent cytoplasmic DNA accumulation triggers DNA senser, the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. STING activation further stimulates downstream IRF3 and NF-kB pathways, thus boost type-I interferon signalling and NF-kB mediated inflammation. These findings elucidate a molecular mechanism linking PLAGL1 induced cell apoptosis to type-I interferon signalling and suggest a potential benefit for targeting cGAS/STING in T1DM treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451391 | PMC |
http://dx.doi.org/10.1111/jcmm.70130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!