Successful integration of point-of-care testing (POCT) into clinical settings requires improved assay sensitivity and precision to match laboratory standards. Here, we show how innovations in amplified biosensing, imaging, and data processing, coupled with deep learning, can help improve POCT. To demonstrate the performance of our approach, we present a rapid and cost-effective paper-based high-sensitivity vertical flow assay (hs-VFA) for quantitative measurement of cardiac troponin I (cTnI), a biomarker widely used for measuring acute cardiac damage and assessing cardiovascular risk. The hs-VFA includes a colorimetric paper-based sensor, a portable reader with time-lapse imaging, and computational algorithms for digital assay validation and outlier detection. Operating at the level of a rapid at-home test, the hs-VFA enabled the accurate quantification of cTnI using 50 μL of serum within 15 min per test and achieved a detection limit of 0.2 pg/mL, enabled by gold ion amplification chemistry and time-lapse imaging. It also achieved high precision with a coefficient of variation of <7% and a very large dynamic range, covering cTnI concentrations over 6 orders of magnitude, up to 100 ng/mL, satisfying clinical requirements. In blinded testing, this computational hs-VFA platform accurately quantified cTnI levels in patient samples and showed a strong correlation with the ground truth values obtained by a benchtop clinical analyzer. This nanoparticle amplification-based computational hs-VFA platform can democratize access to high-sensitivity point-of-care diagnostics and provide a cost-effective alternative to laboratory-based biomarker testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483942 | PMC |
http://dx.doi.org/10.1021/acsnano.4c05153 | DOI Listing |
Cureus
December 2024
Department of Neurological Surgery, Ryofukai Satoh Neurosurgical Hospital, Fukuyama, Hiroshima, JPN.
Coil embolization of cerebral aneurysms often encounters challenges in achieving complete filling of the aneurysm sac due to complex shapes and hemodynamic factors, frequently resulting in the formation of a residual cavity (RC) at the aneurysm neck. The hemodynamic mechanisms underlying RC formation and growth, however, remain poorly understood. Computational fluid dynamics (CFD) analysis, combined with silent MRA free from contrast agents and metal artifacts, offers a promising approach to elucidate these mechanisms, potentially enhancing the clinical management of cerebral aneurysms post-coiling.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Engineering and Innovation, The Open University, Milton Keynes MK7 6AA, UK.
A simple pore microstructure of parallel, identical, and inclined smooth-walled slits in a rigid solid, for which prediction of its geometrical and acoustic properties is straightforward, can yield useful sound absorption. This microstructure should be relatively amenable to 3D printing. Discrepancies between measurements and predictions of normal incidence sound absorption spectra of 3D printed vertical and slanted slit pore samples have been attributed to the rough surfaces of the slit walls and uneven slit cross-sections perpendicular to the printing direction.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Environmental Health, College of Medicine and Health Sciences, Hawassa University, Hawassa, Sidama Region, Ethiopia.
The aim of this study was to investigate the growth characteristics of different local macrophyte species (n = 7) capable of growing in untreated coffee wastewater, select the dominant species for use in mesocosms, to study the efficacy of three major species in three replications (3 x 3) in improving the physicochemical characteristics of coffee wet mill wastewater, and to assess the contribution of macrophyte biomass to nutrient sequestration in the constructed wetlands. The current study showed that can sustain water logging and partially saturated conditions. The conducted wetland experiments pointed out the feasibility of VUFCW technology in ameliorating the impurities in wet coffee processing mills wastewater.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun, 130117, China.
Background: Adrenaline and glucose are essential biomarkers in human body for maintaining metabolic balance. Abnormal levels of adrenaline and glucose are associated with various diseases. Therefore, it is important to design portable, on-site devices for rapid adrenaline and glucose analysis to safeguard health.
View Article and Find Full Text PDFAnal Chem
January 2025
Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Athens 157 71, Greece.
This work describes fully integrated multifolding electrochemical paper-based devices (ePADs) for enhanced multiplexed voltammetric determination of heavy metals (Zn(II), Cd(II), and Pb(II)) using tunable passive preconcentration. The paper devices integrate five circular sample preconcentration layers and a 3-electrode electrochemical cell. The hydrophobic barriers of the devices are drawn by pen-plotting with hydrophobic ink, while the electrodes are deposited by screen-printing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!