Imaging to Facilitate Ventricular Tachycardia Ablation: Intracardiac Echocardiography, Computed Tomography, Magnetic Resonance, and Positron Emission Tomography.

JACC Clin Electrophysiol

Section of Cardiac Electrophysiology, Cardiovascular Medicine Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA. Electronic address:

Published: October 2024

AI Article Synopsis

  • * Traditional methods like electrograms and pacing have limitations, while intracardiac echocardiography helps visualize anatomy and tissue changes but lacks specificity for identifying problematic areas.
  • * Advanced imaging techniques, such as cardiac magnetic resonance, computed tomography, and positron emission tomography, are becoming essential for better assessing and treating VT, though more clinical trials are needed to improve their practical use.

Article Abstract

Catheter ablation is a well-established and effective strategy for the management of ventricular tachycardia (VT). However, the identification and characterization of arrhythmogenic substrates for targeted ablation remain challenging. Electrogram abnormalities and responses to pacing during VT provide the classical and most validated methods to identify substrates. However, the 3-dimensional nature of the myocardium, nonconductive tissue, and heterogeneous strands of conductive tissue at the border zones or through the nonconductive zones can prohibit easy electrical sampling and identification of the tissue critical to VT. Intracardiac echocardiography is critical for identification of anatomy, examination of catheter approach and contact, assessment of tissue changes during ablation, and even potential substrates as echogenic regions, but lacks specificity with regard to the latter compared with advanced modalities. In recent decades, cardiac magnetic resonance, computed tomography and positron emission tomography have emerged as valuable tools in the periprocedural evaluation of VT ablation. Cardiac magnetic resonance has unparalleled soft tissue and temporal resolution and excels at identification of expanded interstitial space caused by myocardial infarction, fibrosis, inflammation, or infiltrative myopathies. Computed tomography has excellent spatial resolution and is optimal for identification of anatomic variabilities including wall thickness, thrombus, and lipomatous metaplasia. Positron emission tomography excels at identification of substrates including amyloidosis, sarcoidosis, and other inflammatory substrates. These imaging modalities are vital for assessing arrhythmogenic substrates, guiding optimal access strategy, and assessing ablation efficacy. Although clearly beneficial in specific settings, further clinical trials are needed to enhance generalizability and optimize integration of cardiac imaging for VT ablation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacep.2024.08.003DOI Listing

Publication Analysis

Top Keywords

computed tomography
12
magnetic resonance
12
positron emission
12
emission tomography
12
ventricular tachycardia
8
intracardiac echocardiography
8
arrhythmogenic substrates
8
cardiac magnetic
8
excels identification
8
ablation
7

Similar Publications

Objectives: Due to the increasing use of cone-beam computed tomography (CBCT) in dentistry and considering the effects of radiation on radiosensitive organs, the aim of this study was to investigate the effect of shielding on absorbed dose of eyes, thyroid and breasts in scans conducted with different parameters using two different fields of view (FOV).

Methods: Dose measurements were calculated on a tissue-equivalent female phantom by repeating each scanning parameter three times and placing at least two thermoluminescent dosimeters (TLD) on each organ, with the averages then taken. The same CBCT scans were performed in two different FOV with shielding including thyroid collar, radiation safety glasses and lead apron and without shielding.

View Article and Find Full Text PDF

Purpose: Pulmonary perfusion imaging is a key lung health indicator with clinical utility as a diagnostic and treatment planning tool. However, current nuclear medicine modalities face challenges like low spatial resolution and long acquisition times which limit clinical utility to non-emergency settings and often placing extra financial burden on the patient. This study introduces a novel deep learning approach to predict perfusion imaging from non-contrast inhale and exhale computed tomography scans (IE-CT).

View Article and Find Full Text PDF

Background: Accurate differentiation between benign and malignant pancreatic lesions is critical for effective patient management. This study aimed to develop and validate a novel deep learning network using baseline computed tomography (CT) images to predict the classification of pancreatic lesions.

Methods: This retrospective study included 864 patients (422 men, 442 women) with confirmed histopathological results across three medical centers, forming a training cohort, internal testing cohort, and external validation cohort.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the effects of 4-hexylresorcinol (4HR), a synthetic compound with antioxidant and stress-modulating properties, on diabetic sarcopenia in the masseter muscle.

Methods: A controlled, parallel-arm study was conducted using 38 Sprague-Dawley rats divided into diabetic and non-diabetic groups. Diabetes was induced with streptozotocin (STZ), and the groups were further subdivided to receive weekly subcutaneous injections of either 4HR or saline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!