The use of CO and CO-derived chemicals offers society sustainable and biocompatible chemistry for a variety of applications, ranging from materials to medicines. In this context, dimethyl carbonate (DMC) stands out owing to its low toxicity, high biodegradability, tunable reactivity, and sustainable production. Further, the ability of DMC to act as an ambient electrophile at varied temperatures and reaction conditions in order to produce methoxycarbonylated (via B2) and methylated products (via B2) is very promising. While the methylation of hetero-H (N-, O-, and S-methylation) with DMC is established and well-reviewed, the C-H methylation reaction with DMC is limited, and there is no specific literature detailing the C-methylation reaction using DMC, creating new opportunities as well as challenges in the same domain. In this context, the present perspective focuses on the new breakthroughs, recent advances, and trends in C-H methylation reactions employing DMC. A critical analysis of the mechanistic course of reactions under each category was undertaken. We believe this timely perspective will offer an in-depth analysis of existing literature with critical remarks, which will certainly inspire fellow researchers across disciplines to understand and pursue cutting-edge research in the area of C-H methylation (alkylation) using DMC and related organic carbonates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.4c01719DOI Listing

Publication Analysis

Top Keywords

c-h methylation
16
dimethyl carbonate
8
reaction dmc
8
dmc
7
methylation
5
sustainable c-h
4
methylation employing
4
employing dimethyl
4
carbonate co-derived
4
co-derived chemicals
4

Similar Publications

Proton Transfer Anionic Polymerization of Methyl Methacrylate with Ligands for Dual Control of Molecular Weight and Tacticity.

Precis Chem

December 2024

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

Dual control of the molecular weight and tacticity in proton transfer anionic polymerization (PTAP) of methyl methacrylate (MMA) was investigated by using various ligands in the presence of a bulky potassium base catalyst and an organic compound with a weakly acidic C-H bond as dormant species in toluene at 0 °C. The tacticity of the resulting poly(MMA) (PMMA) produced without ligands was nearly atactic (// = 22/54/24). However, the use of 18-crown-6 as a ligand afforded predominantly syndiotactic PMMA ( ≈ 58%), whereas the use of chiral bis(oxazoline) ligands gave slightly isotactic-rich PMMA ( ≈ 32%).

View Article and Find Full Text PDF

Salicylaldehyde-Enabled Co(II)-Catalyzed Oxidative C-H Alkenylation of Indoles with Olefins.

J Org Chem

December 2024

Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules. Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals. College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.

A ligand-promoted oxidative dehydrogenation C-H alkenylation of indoles and olefins was achieved using commercial and low-cost Co(NO)·6HO as a catalyst and Mn(OAc) as an oxidant. The design and selection of electrically unique methyl-substituted salicylaldehyde as a ligand is the key to achieve this transformation. This protocol can introduce an indole backbone into diverse bioactive molecules such as ibuprofen, naproxen, and Estrol for late-stage synthetic modification, which has potential applications in the discovery of drug molecules containing an indole motif.

View Article and Find Full Text PDF

Phosphaguanidinate yttrium carbene, carbyne and carbide complexes: three distinct C1 functionalities.

Dalton Trans

December 2024

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Jiangwan Campus, Fudan University, Shanghai 200438, China.

The phosphaguanidinate rare-earth-metal bis(aminobenzyl) complexes [(PhP)C(NCHPr-2,6)]Ln(CHCH NMe-) (Ln = Y(1-Y) and Lu(1-Lu)) were synthesized by the protonolysis of (PhP)[C(NHR)(NR)] (R = 2,6-(Pr)CH) with Ln(CHCHNMe-) (Ln = Y and Lu). Interestingly, the ring-opening rearrangement product [-MeNCHCHC(NCHPr-2,6)]Lu(CHCHNMe-)[O(CH)PPh] (2) was obtained when the acid-base reaction was carried out in THF solution at 60 °C for 36 h. Additionally, the trinuclear homometallic yttrium multimethyl/methylidene complex {[(PhP)C(NCHPr-2,6)]Y(μ-Me)}(μ-Me)(μ-CH) (3) was synthesized by the treatment of 1-Y with AlMe (2 equiv.

View Article and Find Full Text PDF

()--(2,6-Di-methyl-phen-yl)-1-[(2-meth-oxy-phen-yl)amino]-methanimine oxide methanol monosolvate.

IUCrdata

October 2024

School of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville, Durban, 4000, South Africa.

In the title solvate, CHNO·CHO, the dihedral angles between the formamidine backbone and the pendant 2-meth-oxy-phenyl and 2,6-di-methyl-phenyl groups are 14.84 (11) and 81.61 (12)°, respectively.

View Article and Find Full Text PDF

Carboxylations of (Hetero)Aromatic C-H Bonds Using an Alkyl Silyl Carbonate Reagent.

Org Lett

December 2024

Department of Biophysical Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, AobaSendai 980-8578, Japan.

In this paper, we report that the use of an alkyl silyl carbonate reagent combined with CsF and 18-crown-6 facilitates efficient direct carboxylations of (hetero)aromatic C-H bonds. This system also enables benzylic carboxylation of a toluene derivative and double carboxylation of methyl heteroarene. The carbonate reagent is characterized by its ease of handling and storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!