Nickel Dynamics Switches the Selectivity of CO Hydrogenation.

Angew Chem Int Ed Engl

Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, (BIST), Av. Països Catalans 16, Tarragona, 43007, Spain.

Published: October 2024

The Reverse Water Gas-Shift reaction (CO+H CO+HO) allows to balance syn-gas under industrial conditions. Nickel has been suggested as a potential catalyst but the temperature required is too high, more than 800 °C, limiting practical implementation but when lowering the temperature methanation occurs. Simulations via Density Functional Theory on well-defined surfaces have systematically failed to reproduce these experimental results. But under reaction conditions, Ni surfaces are not static and DFT models coupled to microkinetics show that low temperatures (high CO coverages) drive the generation of Ni adatoms that are the active sites for methanation. At higher temperatures, the adatom population decreases, and the selectivity towards CO increases. Thus the mechanism behind the selectivity switch is driven by the dynamics induced by reaction intermediates. Our work contributes to the inclusion of dynamic aspects of materials under reaction conditions in the understanding of complex catalytic behaviour.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202417392DOI Listing

Publication Analysis

Top Keywords

reaction conditions
8
nickel dynamics
4
dynamics switches
4
switches selectivity
4
selectivity hydrogenation
4
hydrogenation reverse
4
reverse water
4
water gas-shift
4
reaction
4
gas-shift reaction
4

Similar Publications

Trends in blood transfusion and causes of blood wastage: a retrospective analysis in a teaching hospital.

BMC Health Serv Res

January 2025

Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, 666 Buzih Road, Taichung, 40601, Taiwan.

Background: Blood is a vital medical resource that is sourced from primarily nonremunerated donations. As Taiwan faces an aging population, increasing medical demands pose new challenges to blood resource management. Trend analysis can improve blood supply chain management and allocate blood resources more efficiently and cost-effectively.

View Article and Find Full Text PDF

Visual search becomes slower with aging, particularly when targets are difficult to discriminate from distractors. Multiple distractor rejection processes may contribute independently to slower search times: dwelling on, skipping of, and revisiting of distractors, measurable by eye-tracking. The present study investigated how age affects each of the distractor rejection processes, and how these contribute to the final search times in difficult (inefficient) visual search.

View Article and Find Full Text PDF

[Mechanism of inflammatory microecological response to TAS2R14/SIgA/TSLP in regulating epithelial cell barrier in cold asthma rats through lung-gut axis by using Shegan Mahuang Decoction and bitter and purging Chinese herbs].

Zhongguo Zhong Yao Za Zhi

December 2024

Anhui University of Chinese Medicine Hefei 230012, China Anhui Province Key Laboratory of Application and Transformation of Traditional Chinese Medicine in Prevention and Treatment of Major Pulmonary Diseases Hefei 230031, China Key Laboratory of Xin'an Medicine, Ministry of Education Hefei 230038, China.

This study aimed to investigate the mechanism by which Shegan Mahuang Decoction(SGMH) and its bitter Chinese herbs(BCHs) regulated the lung-gut axis through the bitter taste receptor 14(TAS2R14)/secretory immunoglobulin A(SIgA)/thymic stromal lymphopoietin(TSLP) to intervene in the epithelial cell barrier of cold asthma rats. Fifty SD rats were randomly divided into the following five groups: normal group, model group, dexamethasone group, SGMH group, and BCHs group. A 10% ovalbumin(OVA) solution was used to sensitize the rats via subcutaneous injection on both sides of the abdomen and groin, combined with 2% OVA atomization and cold(2-4 ℃) stimulation to induce a cold asthma model in rats.

View Article and Find Full Text PDF

Scale-up of Microdroplet Reactors for Efficient CO Resource Utilization.

J Am Chem Soc

January 2025

MOE Key Laboratory of Mesoscopic Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China.

Two-phase reactions involving microdroplets have gained significant attention in recent years due to their unique ability to catalyze and accelerate reactions that typically do not occur under standard conditions by leveraging chemical and physical effects at the micrometer-scale interface. In this work we have innovatively developed a scaled-up microdroplet reactor for the efficient resource utilization of CO. The reaction liquid is sprayed in the form of mist ( < 20 μm), facilitating complete contact and reaction with gaseous CO.

View Article and Find Full Text PDF

Dynamic reconfiguration of default and frontoparietal network supports creative incubation.

Neuroimage

January 2025

Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, 100048, China. Electronic address:

Although creative ideas often emerge during distraction activities unrelated to the creative task, empirical research has yet to reveal the underlying neurocognitive mechanism. Using an incubation paradigm, we temporarily disengaged participants from the initial creative ideation task and required them to conduct two different distraction activities (moderately-demanding: 1-back working memory task, non-demanding: 0-back choice reaction time task), then returned them to the previous creative task. On the process of creative ideation, we calculated the representational dissimilarities between the two creative ideation phases before and after incubation period to estimate the neural representational change underlying successful incubation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!