Genes of the family PHOSPHATIDYLETHANOLAMINE-BINDING PROTEINS (PEBP) have been intensely studied in plants for their role in cell (re)programming and meristem differentiation. Recently, sporadic reports of the presence of a new type of PEBP in plants became available, highly similar to the YY-PEBPs of prokaryotes. A comprehensive investigation of their spread, origin, and function revealed conservation across the plant kingdom. The YY-PEBP clade in plants seems to have resulted from a single Horizontal Gene Transfer (HGT) episode from a prokaryotic organism to an ancestral streptophyte. YY-PEBPs are also present in other eukaryotes, such as certain fungi, diatoms, and rotifers, and these cases derive from independent HGT events. Reciprocally, the occurrence of the eukaryotic CETS/RKIP type PEBPs (CR-PEBPs) was noticed in bacteria of the genus Nocardia, showing that HGT has occurred as well from eukaryotes to prokaryotes. Based on these observations, we propose that the current model of the PEBP family in plants needs to be updated with the clade STEPMOTHER OF FT AND TFL1 (SMFT). SMFT genes not only share high sequence conservation but also show specific expression in homologous plant structures that serve as propagules. Functional analysis of Arabidopsis smft mutant lines pointed to a function for this gene in regulating seed germination, both concerning primary dormancy release and in response to adverse high-temperature conditions. Overall, our study reveals an increasing complexity in the evolutionary history of the PEBP gene family, unlocking new potential in understanding the evolution and functional spectrum of these important key regulatory genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.17057DOI Listing

Publication Analysis

Top Keywords

pebp gene
8
stepmother tfl1
8
tfl1 smft
8
smft genes
8
pebp
5
evolutionary origin
4
origin functional
4
functional investigation
4
investigation conserved
4
conserved plant
4

Similar Publications

Orchids constitute one of the most diverse families of angiosperms, yet their genome evolution and diversity remain unclear. Here we construct and analyse chromosome-scale de novo assembled genomes of 17 representative accessions spanning 12 sections in Dendrobium, one of the largest orchid genera. These accessions represent a broad spectrum of phenotypes, lineages and geographical distributions.

View Article and Find Full Text PDF

Background: Safflower thrives in dry environments but faces difficulties with flowering in wet and rainy summers. Flavonoids play a role in flower development and can potentially alleviate these challenges. Furthermore, the FLOWERING LOCUS T (FT) family of phosphatidylethanolamine-binding protein (PEBP) genes play a crucial role in the photoperiodic flowering pathway.

View Article and Find Full Text PDF

The FLOWERING LOCUS T-like genes from patchouli (Pogostemon cablin) antagonistically regulate flowering time.

Plant Physiol Biochem

December 2024

Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. Electronic address:

Flowering is crucial for the reproductive success of plants. Patchouli (Pogostemon cablin), a widely utilized medicinal and aromatic plant from the Lamiaceae family, exhibits rare flowering and fails to produce seeds, thereby posing a challenge for plant evolution and breeding improvement. However, the mechanism underlying flowering in patchouli has not been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how florigen and antiflorigen genes within the PEBP family influence flowering in angiosperms, especially in eelgrass, which is vital for its survival against climate change.
  • - Researchers identified thirteen PEBP genes in eelgrass and found that four of them affect flowering when overexpressed; they analyzed gene expression using RT-PCR across different eelgrass populations and growth stages.
  • - Results indicate that certain genes promote flowering while others inhibit it, with some genes expressed variably in different parts of the plant, suggesting a complex role in flowering and shoot architecture in eelgrass.
View Article and Find Full Text PDF

Background/objectives: Carrot is a major root vegetable in the owing to its abundant carotenoids, antioxidants, vitamins, and minerals. The modern dark orange western carrot was derived from sequential domestication events from the white-rooted wild form to the pale orange-, purple-, or yellow-rooted eastern carrot. Genetic and molecular studies between eastern and western carrots are meager despite their evolutionary relatedness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!