Introduction: Biomarker discovery is increasingly moving from single omics to multiomics, as well as from multi-cell omics to single-cell omics. These transitions have increasingly adopted digital transformation technologies to accelerate the progression from data to insight. Here, we will discuss the concept of 'digitalomics' and how digital transformation directly impacts biomarker discovery. This will ultimately assist clinicians in personalized therapy and precision-medicine treatment decisions.
Areas Covered: Genotype-to-phenotype-based insight generation involves integrating large amounts of complex multiomic data. This data integration and analysis is aided through digital transformation, leading to better clinical outcomes. We also highlight the challenges and opportunities of Digitalomics, and provide examples of the application of Artificial Intelligence, cloud- and high-performance computing, and use of tensors for multiomic analysis workflows.
Expert Opinion: Biomarker discovery, aided by digital transformation, is having a significant impact on cancer, cardiovascular, infectious, immunological, and neurological diseases, among others. Data insights garnered from multiomic analyses, combined with patient meta data, aids patient stratification and targeted treatment across a broad spectrum of diseases. Digital transformation offers time and cost savings while leading to improved patent healthcare. Here, we highlight the impact of digital transformation on multiomics- based biomarker discovery with specific applications related to oncology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14789450.2024.2413107 | DOI Listing |
Med Phys
December 2024
Department of Physics, Lakehead University, Thunder Bay, Ontario, Canada.
Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.
View Article and Find Full Text PDFPLoS One
December 2024
School of Business Administration, Shandong University of Finance and Economics, Jinan, Shandong, China.
In recent years, China has significantly increased its global competitiveness in digital technologies, emphasizing the importance of the digital economy during the high-quality development stage. The question of how firms in traditional industries can achieve digital transformation, which is critical for participating in the digital economy, is still understudied. Using the ability-motivation-opportunity (AMO) framework, this research developed a model and identified six factors' ability, motivation, and opportunity dimensions.
View Article and Find Full Text PDFPLoS One
December 2024
School of Economics and Management, Quanzhou University of Information Engineering, Quanzhou, Fujian, China.
Informed trading, driven by information asymmetry and market imperfections, varies in presence across markets. This form of trading not only distorts market transaction prices and hinders resource allocation but also initiates adverse selection transactions, increasing liquidity risks and potentially precipitating market crashes, thereby impeding the market's healthy development. Utilizing information asymmetry theory and principal-agent theory, this paper analyzes data from A-share listed companies from 2011 to 2022.
View Article and Find Full Text PDFJ Xray Sci Technol
December 2024
School of Electrical and Information Engineering, Tianjin University, Nankai District, Tianjin, China.
Background: Airport security is still a main concern for assuring passenger safety and stopping illegal activity. Dual-energy X-ray Imaging (DEXI) is one of the most important technologies for detecting hidden items in passenger luggage. However, noise in DEXI images, arising from various sources such as electronic interference and fluctuations in X-ray intensity, can compromise the effectiveness of object identification.
View Article and Find Full Text PDFPLoS One
December 2024
School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
The value of 'data-enabled', digital healthcare is evolving rapidly, as demonstrated in the COVID-19 pandemic, and its successful implementation remains complex and challenging. Harmonisation (within/between healthcare systems) of infrastructure and implementation strategies has the potential to promote safe, equitable and accessible digital healthcare, but guidance for implementation is lacking. Using respiratory technologies as an example, our scoping review process will capture and review the published research between 12th December 2013 to 12th December 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!