A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multi-layer flexible photothermal titanium nitride-based superhydrophobic surface for highly efficient anti-icing and de-icing. | LitMetric

Ice accumulation presents a significant challenge for various residential activities and industrial facilities. Most current de-icing methods are time-consuming and costly. Photothermal superhydrophobic surfaces have garnered significant attention in the field of anti-icing and de-icing due to their environmentally friendly and energy-saving characteristics. However, obtaining photothermal superhydrophobic surfaces with both reliable icing delay and effective photothermal de-icing capabilities at ultra-low temperatures (<-30 °C) remains significantly challenging. In this study, we prepared a multilayer flexible photothermal TiN-based superhydrophobic surface (ML-SHS), comprising an FAS@SiO/TiN superhydrophobic layer and a PDMS/Triton X-100 flexible supporting layer. The optimal ML-SHS exhibits excellent superhydrophobicity (a water contact angle of 162.7° and a sliding angle of 2°) and an average light absorption of 95.6%, and generates a substantial surface temperature increase of 80.2 °C under 1 sun illumination. Droplets easily roll off the ML-SHS at -10 °C without solar illumination and at -35 °C under 1 sun illumination, demonstrating excellent passive anti-icing capability. Due to its excellent photothermal conversion and thermal constraint capabilities, the accumulated ice layer on the ML-SHS rapidly melts within 450 seconds at -20 °C under 1 sun illumination. The ML-SHS also possesses self-cleaning properties, mechanical durability, and chemical stability, ensuring the usability of the superhydrophobic surface under harsh conditions. Our study may offer a novel approach for the design and fabrication of photothermal superhydrophobic surfaces, facilitating efficient passive anti-icing and active de-icing in practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4sm00818aDOI Listing

Publication Analysis

Top Keywords

anti-icing de-icing
8
photothermal superhydrophobic
8
superhydrophobic surfaces
8
multi-layer flexible
4
photothermal
4
flexible photothermal
4
photothermal titanium
4
titanium nitride-based
4
nitride-based superhydrophobic
4
superhydrophobic surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!