Different from conventional luminescent dendrimers with fluorophore tethered outside to dendron, here we first developed endo-encapsulated luminescent dendrimers with multi-resonance (MR) fluorophore embedded inside of carbazole dendrons by growing dendrons through 1,8-positions of central carbazole moiety to create a cavity for accommodating the fluorophore. This endo-encapsulated structure not only shields the fluorophore to fully resist aggregation-caused spectral broadening, but also induce through-space interactions between dendron and fluorophore via intramolecular π-stacking, giving lowered singlet state energy and reduced singlet-triplet energy splitting to accelerate reverse intersystem crossing (RISC) from triplet to singlet states. The resultant dendrimer containing 1,8-linked second-generation carbazole dendrons and boron, sulfur-doped polycyclic MR fluorophore exhibits narrowband blue emission at 471 nm with FWHM kept at 34 nm even in neat film, together with ~4 times enhancement of RISC rate constant compared to its exo-tethered counterpart. Solution-processed OLEDs based on the endo-encapsulated dendrimer reveal efficient narrowband blue emissions with maximum external quantum efficiency of 22.6 %, representing the best device efficiency for blue-emitting multi-resonance dendrimers so far.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202415607DOI Listing

Publication Analysis

Top Keywords

multi-resonance dendrimers
8
through-space interactions
8
efficient narrowband
8
solution-processed oleds
8
luminescent dendrimers
8
carbazole dendrons
8
narrowband blue
8
fluorophore
6
endo-encapsulated
4
endo-encapsulated multi-resonance
4

Similar Publications

Endo-Encapsulated Multi-Resonance Dendrimers with Through-Space Interactions for Efficient Narrowband Blue-Emitting Solution-Processed OLEDs.

Angew Chem Int Ed Engl

October 2024

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, P. R. China.

Different from conventional luminescent dendrimers with fluorophore tethered outside to dendron, here we first developed endo-encapsulated luminescent dendrimers with multi-resonance (MR) fluorophore embedded inside of carbazole dendrons by growing dendrons through 1,8-positions of central carbazole moiety to create a cavity for accommodating the fluorophore. This endo-encapsulated structure not only shields the fluorophore to fully resist aggregation-caused spectral broadening, but also induce through-space interactions between dendron and fluorophore via intramolecular π-stacking, giving lowered singlet state energy and reduced singlet-triplet energy splitting to accelerate reverse intersystem crossing (RISC) from triplet to singlet states. The resultant dendrimer containing 1,8-linked second-generation carbazole dendrons and boron, sulfur-doped polycyclic MR fluorophore exhibits narrowband blue emission at 471 nm with FWHM kept at 34 nm even in neat film, together with ~4 times enhancement of RISC rate constant compared to its exo-tethered counterpart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!