Visualization of drug release is crucial for improving therapeutic efficacy and preventing inappropriate medication dosing, yet, challenging. Herein, we report a pH-activated chemo-immunotherapy nanoplatform with visualization of drug release by ratiometric F magnetic resonance imaging (F MRI). This nanoplatform consists of ultra-small histamine-modified perfluoro-15-crown-5-ether (PFCE) nanodroplets loaded with doxorubicin (Dox), which are packaged in trifluoromethyl-containing metal-organic assemblies coordination-driven self-assembly. The chemical shifts of two types of F atoms in the nanoplatform are significantly different in F nuclear magnetic resonance (NMR) spectra, which facilitates the implementation of ratiometric F MRI without any signal crosstalk. In an acidic tumor microenvironment, this nanoplatform gradually degrades, which results in a sustained drug release with a real-time change in the ratiometric F MRI signal. Therefore, a linear correlation between the Dox release profile and ratiometric F MRI signal is established to visualize Dox release. Moreover, the pH-triggered disassembly of the nanoplatform leads to cell pyroptosis, which evokes immunogenic cell death (ICD), resulting in the regression of the primary tumor and inhibition of distal tumor growth. This study provides the proof-of-concept application of ratiometric F MRI to visualize drug release .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446317PMC
http://dx.doi.org/10.1039/d4sc03643cDOI Listing

Publication Analysis

Top Keywords

drug release
20
ratiometric mri
16
visualization drug
12
magnetic resonance
12
mri signal
12
chemo-immunotherapy nanoplatform
8
ratiometric magnetic
8
resonance imaging
8
dox release
8
release
7

Similar Publications

Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution.

World J Microbiol Biotechnol

January 2025

Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.

Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction and damage can result in the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activates the cGAS-STING pathway, promoting the onset of inflammatory diseases. Various factors, such as oxidative stress, viral infection, and drug toxicity, have been identified as inducers of mitochondrial damage. This study aims to investigate the role of mtDNA as a critical inflammatory mediator in the pathogenesis of ketamine (KET)-induced cystitis (KC) through the cGAS-STING pathway.

View Article and Find Full Text PDF

Facile Synthesis of Flower-cluster ZIF Nanocarriers: Performance in Controlled Release of Thiamethoxam and Insecticidal Activity.

Environ Res

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China. Electronic address:

At present, it is highly important to develop nanopesticide, which can improve the effect of pesticides and reduce the risks of environmental. Zeolitic imidazolate framework (ZIF) is usually used as a nanocarrier of nanopesticide, which has a porous structure and stimuli-responsive properties. However, the drug loading performance and stability of ZIF are poor.

View Article and Find Full Text PDF

Cardiopulmonary resuscitation (CPR) after cardiac arrest (CA) is an important cause of neurological impairment and leads to considerable morbidity and mortality. The stability of the blood-brain barrier (BBB) is crucial for minimizing secondary neurological damage and improving long-term prognosis. However, the precise mechanisms and regulatory pathways that contribute to BBB dysfunction after CPR remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!