The emerging importance of epigenetic gene regulation in cancer progression necessitates not only our understanding of which genes are potential targets but also what mechanisms are employed in targeting those genes. Understanding the mechanisms that promote the evolution of the normal genome and epigenome is central to understanding how cancer cells adapt to chemotherapy. Our previous investigations have shown that heat shock protein 90 (HSP90) has a critical role in epigenetic gene regulation through histone acetylation and phenotypic plasticity. We recently extended these results in an A549 lung cancer model to test the role of HSP90 in the plasticity of cells regarding multi-drug resistance and epithelial-to-mesenchymal transition phenotypes. HSP90 is over-expressed in multiple cancers with poor prognosis. We propose that inhibition of HSP90 results in lower phenotypic plasticity of cancer cells making them more susceptible to chemotherapeutic intervention. Here we review the context of our results in the broader field of evolution of these phenotypes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448696 | PMC |
http://dx.doi.org/10.46439/breastcancer.4.021 | DOI Listing |
Mol Biol Rep
January 2025
College of Life Sciences, Liaoning Normal University, Dalian, Liaoning, 116029, China.
Background: High temperature is a critical environmental factor leading to mass mortality in oyster aquaculture in China. Recent advancements highlight the physiological regulation function of γ-aminobutyric acid (GABA) in the adaptation of environmental stress.
Methods And Results: This study examined the physiological responses of the Pacific oyster (Crassostrea gigas) upon high temperature exposure, focusing on the histopathological changes in gill, the GABA concentration, the mRNA expression and activities of apoptosis-related genes.
Proc Natl Acad Sci U S A
January 2025
Department of Mathematics and Mathematical Statistics, Umeå University, Umeå 90187, Sweden.
Multicellularity spans a wide gamut in terms of complexity, from simple clonal clusters of cells to large-scale organisms composed of differentiated cells and tissues. While recent experiments have demonstrated that simple forms of multicellularity can readily evolve in response to different selective pressures, it is unknown if continued exposure to those same selective pressures will result in the evolution of increased multicellular complexity. We use mathematical models to consider the adaptive trajectories of unicellular organisms exposed to periodic bouts of abiotic stress, such as drought or antibiotics.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Dyson School of Design Engineering, Imperial College London, SW7 2DB London, United Kingdom.
To date, there is strong evidence indicating that humans with normal hearing can adapt to non-individual head-related transfer functions (HRTFs). However, less attention has been given to studying the generalization of this adaptation to untrained conditions. This study investigated how adaptation to one set of HRTFs can generalize to another set of HRTFs.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Department of Earth, Environmental and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, USA.
Microorganisms adapted to high hydrostatic pressures at depth in the oceans and within the subsurface of Earth's crust represent a phylogenetically diverse community thriving under extreme pressure, temperature, and nutrient availability conditions. To better understand the microbial function, physiological responses, and metabolic strategies at conditions requires high-pressure (HP) continuous culturing techniques that, although commonly used in bioengineering and biotechnology applications, remain relatively rare in the study of the Earth's microbiomes. Here, we focus on recent developments in the design of HP chemostats, with particular emphasis on adaptations for delivery and sampling of dissolved gases.
View Article and Find Full Text PDFJ Fish Biol
January 2025
Marine Biology, Ghent University, Ghent, Belgium.
The European eel (Anguilla anguilla L.) exhibits a remarkable phenotypic plasticity by occupying both marine and freshwater habitats and transitional areas in between. Because these habitats are characterized by different food sources with different fatty acid compositions, it remains unclear how eels from different habitats obtain essential long-chain polyunsaturated fatty acids (LC-PUFAs) to integrate in their lipids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!