High-Energy-Density All-VO Battery.

Small

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.

Published: December 2024

AI Article Synopsis

  • Symmetrical batteries show potential as safe and cost-effective options for future energy storage, but face issues with low energy density due to limited electrode choices.
  • Researchers propose a high-voltage all-VO symmetrical battery that separates the cathodic and anodic reactions to improve performance.
  • A new VO-carbon composite electrode demonstrates impressive capabilities, with a high capacity of 174 mAh/g, peak voltage over 2.9 V, and exceptional stability after numerous cycles, surpassing many existing lithium-based battery technologies.

Article Abstract

Symmetrical batteries hold great promise as cost-effective and safe candidates for future battery technology. However, they realistically suffer low energy density due to the challenge in integrating high specific capacity with high voltage plateau from the limited choice of bipolar electrodes. Herein, a high-voltage all-VO symmetrical battery with clear voltage plateau is conceptualized by decoupling the cathodic/anodic redox reactions based upon the episteme of VO intercalation chemistry. As the proof-of-concept, a hierarchical VO-carboncomposite (VO-C) bipolar electrode with boosted electron/ion transport kinetics is fabricated, which shows high performance as both cathode and anode in their precisely clamped working potential windows. Accordingly, the symmetrical full-battery exhibits a high capacity of 174 mAh g along with peak voltage output of above 2.9 V at 0.5C, remarkable capacity retention of 81% from 0.5C to 10C, and good cycling stability of 70% capacity retention after 300 cycles at 5C. Notably, its energy density reaches 429 Wh kg at 0.5C estimated by the cathode mass, which outperforms most of the existing Li/Na/K-based symmetrical batteries. This study leaps forward the performance of symmetrical battery and provides guidance to extend the scope of future battery designs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202407159DOI Listing

Publication Analysis

Top Keywords

symmetrical batteries
8
future battery
8
energy density
8
voltage plateau
8
symmetrical battery
8
capacity retention
8
battery
5
symmetrical
5
high-energy-density all-vo
4
all-vo battery
4

Similar Publications

Hydrogel electrolytes are crucial for solving the problems of random zinc dendrite growth, hydrogen evolution reactions, and uncontrollable passivation. However, their complex fabrication processes pose challenges to achieving large-scale production with excellent mechanical properties required to withstand multiple cycles of mechanical loads while maintaining high electrochemical performance needed for the new-generation flexible zinc-ion batteries. Herein, we present a superspreading-based strategy to produce robust hydrogel electrolytes consisting of polyvinyl alcohol, sodium alginate and sodium acetate.

View Article and Find Full Text PDF

Optimizing LiNO Conversion through a Defective Carbon Matrix as Catalytic Current Collectors for Highly Durable and Fast-Charging Li Metal Batteries.

Nano Lett

January 2025

Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Lithium nitrate (LiNO) stands as an effective electrolyte additive, mitigating the degradation of Li metal anodes by forming a LiN-rich solid electrolyte interphase (SEI). However, its conversion kinetics are impeded by energy-consuming eight-electron transfer reactions. Herein, an isoreticular metal-organic framework-8-derived carbon is incorporated into the carbon cloth (RMCC) as a catalytic current collector to regulate the LiNO conversion kinetics and boost LiN generation inside the SEI.

View Article and Find Full Text PDF

Weak H-Bond Interface Environment for Stable Aqueous Zinc Batteries.

ACS Nano

January 2025

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Hydrogen evolution reaction and Zn dendrite growth, originating from high water activity and the adverse competition between the electrochemical kinetics and mass transfer, are the main constraints for the commercial applications of the aqueous zinc-based batteries. Herein, a weak H-bond interface with a suspension electrolyte is developed by adding TiO nanoparticles into the electrolytes. Owing to the strong polarity of Ti-O bonds in TiO, abundant hydroxyl functional groups are formed between the TiO active surface and aqueous environment, which can produce a weak H-bond interface by disrupting the initial H-bond networks between the water molecules, thereby accelerating the mass transfer of Zn and reducing the water activity.

View Article and Find Full Text PDF

Carving Metal-Organic-Framework Glass Based Solid-State Electrolyte Via a Top-Down Strategy for Lithium-Metal Battery.

Angew Chem Int Ed Engl

January 2025

KU Leuven, Materials engineering, Kasteelpark Arenberg 44 bus 2450, 3001 LEUVEN Belgium, LEUVEN, BELGIUM.

Traditional polymer solid electrolytes (PSEs) suffer from low Li conductivity, poor kinetics and safety concerns. Here, we present a novel porous MOF glass gelled polymer electrolyte (PMG-GPE) prepared via a top-down strategy, which features a unique three-dimensional interconnected graded-aperture structure for efficient ion transport. Comprehensive analyses, including time-of-flight secondary ion mass spectrometry (TOF-SIMS), Solid-state 7Li magic-angle-spinning nuclear magnetic resonance (MAS-NMR), Molecular Dynamics (MD) simulations, and electrochemical tests, quantify the pore structures, revealing their relationship with ion conductivity that increases and then decreases as macropore proportion rises.

View Article and Find Full Text PDF

Dendrite-free Zn anode induced by Sn/NC towards highly efficient Zn-ion batteries.

Chem Commun (Camb)

January 2025

Institute of Clean Energy and Advanced Nanocatalysis (iClean), School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China.

Herein, Sn nanoparticles supported on N-doped carbon (Sn/NC) were constructed by a g-CN assisted strategy for the interface layer of Zn anodes in Zn-ion batteries. The presence of Sn/NC effectively regulates the zinc plating/stripping process, which makes Sn/NC@Zn outstanding in both symmetrical and full cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!