Artificial intelligence and machine learning (AI/ML) can be used to automatically analyze large image datasets. One valuable application of this approach is estimation of plant trait data contained within images. Here we review 39 papers that describe the development and/or application of such models for estimation of stomatal traits from epidermal micrographs. In doing so, we hope to provide plant biologists with a foundational understanding of AI/ML and summarize the current capabilities and limitations of published tools. While most models show human-level performance for stomatal density (SD) quantification at superhuman speed, they are often likely to be limited in how broadly they can be applied across phenotypic diversity associated with genetic, environmental, or developmental variation. Other models can make predictions across greater phenotypic diversity and/or additional stomatal/epidermal traits, but require significantly greater time investment to generate ground-truth data. We discuss the challenges and opportunities presented by AI/ML-enabled computer vision analysis, and make recommendations for future work to advance accelerated stomatal phenotyping.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565210PMC
http://dx.doi.org/10.1093/jxb/erae395DOI Listing

Publication Analysis

Top Keywords

computer vision
8
phenotypic diversity
8
machine learning-enabled
4
learning-enabled computer
4
vision plant
4
plant phenotyping
4
phenotyping primer
4
primer ai/ml
4
ai/ml case
4
case study
4

Similar Publications

Estimating the numbers and whereabouts of internally displaced people (IDP) is paramount to providing targeted humanitarian assistance. In conflict settings like the ongoing Russia-Ukraine war, on-the-ground data collection is nevertheless often inadequate to provide accurate and timely information. Satellite imagery may sidestep some of these challenges and enhance our understanding of the IDP dynamics.

View Article and Find Full Text PDF

Accurate classification of logos is a challenging task in image recognition due to variations in logo size, orientation, and background complexity. Deep learning models, such as VGG16, have demonstrated promising results in handling such tasks. However, their performance is highly dependent on optimal hyperparameter settings, whose fine-tuning is both labor-intensive and time-consuming.

View Article and Find Full Text PDF

Weather recognition is crucial due to its significant impact on various aspects of daily life, such as weather prediction, environmental monitoring, tourism, and energy production. Several studies have already conducted research on image-based weather recognition. However, previous studies have addressed few types of weather phenomena recognition from images with insufficient accuracy.

View Article and Find Full Text PDF

Pattern memory cannot be completely and truly realized in deep neural networks.

Sci Rep

December 2024

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214122, China.

The unknown boundary issue, between superior computational capability of deep neural networks (DNNs) and human cognitive ability, has becoming crucial and foundational theoretical problem in AI evolution. Undoubtedly, DNN-empowered AI capability is increasingly surpassing human intelligence in handling general intelligent tasks. However, the absence of DNN's interpretability and recurrent erratic behavior remain incontrovertible facts.

View Article and Find Full Text PDF

Proper exposure settings are crucial for modern machine vision cameras to accurately convert light into clear images. However, traditional auto-exposure solutions are vulnerable to illumination changes, splitting the continuous acquisition of unsaturated images, which significantly degrades the overall performance of underlying intelligent systems. Here we present the neuromorphic exposure control (NEC) system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!