ZnO with Different Morphologies Sensitized by Metalloporphyrins as Catalysts for H Production by Water Splitting Under Sunlight.

Chem Asian J

Department of Chemistry, Federal University of Paraná, Av. Coronel. Francisco Heráclito dos Santos, 100 - Jardim das Américas, Curitiba PR, 81531-980 -Postal Box 19032.

Published: January 2025

In this work, zinc oxide with different morphologies and textural properties were prepared and sensitized with metalloporphyrins (MPs) aiming to improve its solar energy harvesting capability for H production by water splitting under sunlight (a 300 W Xe/Hg lamp). An anionic iron(III)porphyrin and a cationic manganese(III)porphyrin were immobilized on different ZnO solids predominantly by electrostatic interactions. In general, the prepared MP-free ZnO solid yielded modest catalytic results which had apparently no direct correlation with their textural properties or morphology. On the other hand, when these ZnO solids had iron or manganese porphyrin sensitizing them, their catalytic performances changed and a superior yield towards H production was observed in comparison to the pure ZnO solids, making evident the synergy achieved between these two components (ZnO and metalloporphyrins) for the prepared solids. It was also observed that the metalloporphyrins and the respective free-base ligand suffered redox reactions when used as homogenous catalyst in this reaction, which could influence their performances as catalysts. The same was not observed in the solids containing immobilized MP, suggesting some protective effect of the ZnO solids on the MP complexes upon immobilization probably due to interaction of the complexes with the ZnO matrix.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202401011DOI Listing

Publication Analysis

Top Keywords

zno solids
16
zno
8
sensitized metalloporphyrins
8
production water
8
water splitting
8
splitting sunlight
8
textural properties
8
solids
6
zno morphologies
4
morphologies sensitized
4

Similar Publications

Near-ultraviolet (NUV)-pumped white light-emitting-diodes (WLEDs) often suffer from poor color rendering in the 480-520 nm range, highlighting the need for an efficient cyan phosphor with strong absorption at 370-420 nm. This study presents the successful synthesis of cyan-emitting ZnS/ZnO phosphors using a high-energy planetary ball milling method followed by post-annealing. The fabricated phosphors, with particle sizes ranging from 1 to 3 μm, exhibit strong cyan emission with CIE chromaticity coordinates of (0.

View Article and Find Full Text PDF

Hybridization effects on the magnetic ground state of ruthenium in double perovskite LaZnRuTiO.

J Phys Condens Matter

January 2025

School of Materials Science, Indian Association for the Cultivation of Science, Calcutta 700 032, Kolkata, West Bengal, 700032, INDIA.

An exotic quantum mechanical ground state, i.e. the nonmagnetic= 0 state, has been predicted for higher transition metal tsystems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.

View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

This study demonstrates a new extraction method for determination of aflatoxins (AFs) in food samples by a GO-SiO/ZnO/FeO nanocomposite as new and effective sorbent. The nanocomposite structure was confirmed by FT-IR, XRD, EDX, FE-SEM, TEM, and mapping techniques. Optimization of the extraction process was conducted by investigating pH, adsorbent amount, sample volume, and solvent volume using central composite design (CCD).

View Article and Find Full Text PDF

In situ visualization of interfacial processes at nanoscale in non-alkaline Zn-air batteries.

Nat Commun

December 2024

Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Zn-air batteries (ZABs) present high energy density and high safety but suffer from low oxygen reaction reversibility and dendrite growth at Zn electrode in alkaline electrolytes. Non-alkaline electrolytes have been considered recently for improving the interfacial processes in ZABs. However, the dynamic evolution and reaction mechanisms regulated by electrolytes at both the positive and Zn negative electrodes remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!