AI Article Synopsis

  • High-voltage lithium metal batteries face challenges due to aggressive electrode chemistry, but locally concentrated ionic liquid electrolytes (LCILEs) show promise for stability with lithium anodes and high-voltage cathodes.
  • The study introduces a wide-temperature LCILE using 1,3-dichloropropane (DCP13) diluent that improves Li ion transport and reduces unwanted side reactions, which enhances battery performance.
  • A Li/NCM90 cell with this LCILE demonstrates impressive capacity retention and stable operation across a wide temperature range and high voltages, highlighting its potential for creating efficient, high-energy-density batteries.

Article Abstract

The development of high-voltage lithium metal batteries (LMBs) encounters significant challenges due to aggressive electrode chemistry. Recently, locally concentrated ionic liquid electrolytes (LCILEs) have garnered attention for their exceptional stability with both Li anodes and high-voltage cathodes. However, there remains a limited understanding of how diluents in LCILEs affect the thermodynamic stability of the solvation structure and transportation dynamics of Li ions. Herein, we propose a wide-temperature LCILEs with 1,3-dichloropropane (DCP13) diluent to construct a non-equilibrium solvation structure under external electric field, wherein the DCP13 diluent enters the Li ion solvation sheath to enhance Li ion transport and suppress oxidative side reactions at high-nickel cathode (LiNiCoMnO, NCM90). Consequently, a Li/NCM90 cell utilizing this LCILE achieves a high capacity retention of 94 % after 240 cycles at 4.3 V, also operates stably at high cut-off voltages from 4.4 V to 4.6 V and over a wide temperature range from -20 °C to 60 °C. Additionally, an Ah-level pouch cell with this LCILE simultaneously achieves high-energy-density and stable cycling, manifesting the practical feasibility. This work redefines the role of diluents in LCILEs, providing inspiration for electrolyte design in developing high-energy-density batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202412896DOI Listing

Publication Analysis

Top Keywords

solvation structure
12
non-equilibrium solvation
8
locally concentrated
8
concentrated ionic
8
ionic liquid
8
liquid electrolytes
8
high-voltage lithium
8
lithium metal
8
metal batteries
8
diluents lciles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!