Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reaction kinetics is predominantly determined by the surface and interface engineering of electrocatalysts. Herein, we demonstrate the growth of cobalt monophosphide and iron monophosphide (CoP/FeP) with an effective solid interface. The surface of CoP/FeP is mesoporous, which is obtained by phosphidizing mesoporous CoFeO. The CoP/FeP electrode exhibits substantially superior hydrogen evolution reaction (HER) performance compared to CoP and FeP. The overpotentials (η) required to generate 10 mA cm are determined to be around 98 mV (CoP/FeP), 220 mV (FeP), and 265 mV (CoP) in an acidic electrolyte. The exchange current density and Tafel slopes suggest that CoP/FeP has better redox properties and kinetic abilities compared to FeP and CoP. Furthermore, the CoP/FeP electrode exhibits reduced electrochemical impedance and superior surface charge transport characteristics in comparison to both the CoP and FeP electrodes. In addition to having a greater number of catalytically active sites, the turnover frequency of CoP/FeP is approximately 2 and 5 times higher than that of FeP and CoP, respectively. The CoP/FeP electrode maintains a consistent current density of around 25 mA cm for a continuous period of 24 h during the HER, attesting to the excellent durability of the CoP/FeP electrode. In addition, a relationship between differential hydrogen adsorption energy (Δ), the corresponding Gibbs free energy change (Δ), and the hydrogen coverage on distinct surfaces, namely, CoP, FeP, and CoP/FeP, is established. The calculation findings show that the CoP/FeP surface, which is predominantly exposed with CoP, exhibits the highest catalytic potential for the HER. The estimation of the specific HER activity of the electrodes, normalized to the electrochemically active surface area, corroborates the calculation findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c09579 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!