A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design, Synthesis, and Biological Evaluation of Novel Quinoline Derivatives against Phytopathogenic Bacteria Inspired from Natural Quinine Alkaloids. | LitMetric

A series of 2-(trifluoromethyl)-4-hydroxyquinoline derivatives were designed and synthesized with introduction of the antibacterial fragment amino alcohols, and their antibacterial activity against plant phytopathogenic bacteria was evaluated for the development of quinoline bactericides. It is worth noting that compound exhibited excellent antibacterial activity with a minimum inhibitory concentration (MIC) value of 3.12 μg/mL against (). Furthermore, assays demonstrated that the protective efficacy of against rice bacterial blight at 200 μg/mL (33.0%) was superior to that of the commercial agent bismerthiazol (18.3%), while the curative efficacy (35.0%) was comparable to that of bismerthiazol (35.7%). The antibacterial mechanisms of indicated that it affected the activity of bacteria by inducing intracellular oxidative damage in and disrupting the integrity of the bacterial cell membrane. The above results demonstrated that the novel quinoline derivative possessed excellent and antibacterial activity, indicating its potential as a novel green agricultural antibacterial agent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c05509DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
12
novel quinoline
8
phytopathogenic bacteria
8
excellent antibacterial
8
antibacterial
6
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation novel
4
quinoline derivatives
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!