Purpose: It is well known that the majority of the extranodal marginal zone lymphomas of mucosa-associated lymphoid tissues (MALT lymphomas) are associated with microbiota, e.g., gastric MALT lymphoma with Helicobacter pylori. In general, they are very sensitive to low-dose radiotherapy and chemotherapeutic agents. The microbiota profile is not clearly elucidated in bronchus-associated lymphoid tissue (BALT) lymphoma, a rare type of MALT lymphoma in the lung. Thus, this study aimed to clarify the intratumor microbiome in BALT lymphoma using the third-generation NGS method.
Materials And Methods: DNAs were extracted from 12 formalin-fixed paraffin-embedded (FFPE) tumor tissues obtained from BALT lymphoma patients diagnosed between 1990 and 2016. 16S rRNA gene was amplified by polymerase chain reaction. Amplicons were sequenced using a Nanopore platform. Next-generation sequencing analysis was performed to assess microbial profiles. For comparison, FFPE specimens from nine non-cancerous lung tissues were also analyzed.
Results: Specific bacterial families including Burkholderiaceae, Bacillaceae, and Microbacteriaceae were associated with BALT lymphoma by a linear discriminant analysis effect size approach. Although the number of specimens was limited, BALT lymphomas exhibited significantly higher microbial abundance and diversity with distinct microbial composition patterns and correlation networks than non-cancerous lung tissues.
Conclusion: This study provides the first insight into intratumor microbiome in BALT lymphoma using the third-generation NGS method. A distinct microbial composition suggests the presence of a unique tumor microenvironment of BALT lymphoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4143/crt.2024.689 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!