We report the synthesis of cationic 2,6-bisiminopyridine organoaluminum complexes, [(BIP)AlR], as stable BAr or PF salts, and their reversible single-electron reduction into well-defined paramagnetic species, [(BIP·)AlR]. Four redox couples, [(BIP)AlR], have been fully characterized through structural, spectroscopic, electrochemical and computational techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483753PMC
http://dx.doi.org/10.1021/acs.inorgchem.4c02664DOI Listing

Publication Analysis

Top Keywords

reversible redox
4
redox ligand-centered
4
ligand-centered reactivity
4
reactivity 26-bisiminopyridine
4
26-bisiminopyridine aluminum
4
aluminum systems
4
systems report
4
report synthesis
4
synthesis cationic
4
cationic 26-bisiminopyridine
4

Similar Publications

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

The favorable redox properties of ferrocene have led to the extensive development of ferrocene-based systems for several electrochemical applications but have scarcely been explored for electrochromism. Here, we report the synthesis and electrochromic properties of novel π-conjugated ferrocene-dicyanovinylene systems (- and -). Monosubstituted (-) and disubstituted (-) compounds have been developed via Knoevenagel condensation of methyl-dicyanovinyl ferrocenes ( or ) with various aromatic aldehydes.

View Article and Find Full Text PDF

Angiotensin type 1 and type 2 receptors-induced mitochondrial dysfunction promotes ferroptosis in cardiomyocytes.

J Hum Hypertens

January 2025

Geriatrics Center & National Clinical Research Center for Aging and Medicine, Jing'an District Central Hospital of Shanghai, Fudan University, Shanghai, China.

Previous studies suggest that ferroptosis is involved in cardiovascular diseases. The aim of the present study is to investigate the causal relationship between angiotensin II type 1 and type 2 receptors (ATR) activities and mitochondrial dysfunction in induction of cardiomyocyte ferroptosis. Human AC16 cardiomyocytes were first pre-treated with an ATR blockers, before stimulated with angiotensin II (Ang II) for 24 h.

View Article and Find Full Text PDF

Thermoelectrochemical Method for Quantification of the Micellization Entropy of Redox-Active Polymers.

ACS Macro Lett

January 2025

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Redox-active micelles undergo reversible association and dissociation in response to their redox potential and are promising materials for various applications, such as drug delivery and bioimaging. Evaluation of the micellization entropy is critical in controlling the thermodynamics of micelle formation. However, conventional methods such as isothermal titration calorimetry and surface tensiometry require a long measurement time to observe changes in the heat flow or the surface tension caused by the micellization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!