Background: Cereal diseases caused by insect-transmitted viruses are challenging to forecast and control because of their intermittent outbreak patterns, which are usually attributed to increased population densities of vector insects due to cereal crop rotations and indiscriminate use of pesticides, and lack of resistance in commercial varieties. Root microbiomes are known to significantly affect plant health, but there are significant knowledge gaps concerning epidemics of cereal virus diseases at the microbiome-wide scale under a variety of environmental and biological factors.
Results: Here, we characterize the diversity and composition of rice (Oryza sativa) root-associated bacterial communities after infection by an insect-transmitted reovirus, rice black-streaked dwarf virus (RBSDV, genus Fijivirus, family Spinareoviridae), by sequencing the bacterial 16S rRNA gene amplified fragments from 1240 samples collected at a consecutive 3-year field experiment. The disease incidences gradually decreased from 2017 to 2019 in both Langfang (LF) and Kaifeng (KF). BRSDV infection significantly impacted the bacterial community in the rice rhizosphere, but this effect was highly susceptible to both the rice-intrinsic and external conditions. A greater correlation between the bacterial community in the rice rhizosphere and those in the root endosphere was found after virus infection, implying a potential relationship between the rice-intrinsic conditions and the rhizosphere bacterial community. The discrepant metabolites in rhizosphere soil were strongly and significantly correlated with the variation of rhizosphere bacterial communities. Glycerophosphates, amino acids, steroid esters, and triterpenoids were the metabolites most closely associated with the bacterial communities, and they mainly linked to the taxa of Proteobacteria, especially Rhodocyclaceae, Burkholderiaceae, and Xanthomonadales. In addition, the greenhouse pot experiments demonstrated that bulk soil microbiota significantly influenced the rhizosphere and endosphere communities and also regulated the RBSDV-mediated variation of rhizosphere bacterial communities.
Conclusions: Overall, this study reveals unprecedented spatiotemporal dynamics in rhizosphere bacterial communities triggered by RBSDV infection with potential implications for disease intermittent outbreaks. The finding has promising implications for future studies exploring virus-mediated plant-microbiome interactions. Video Abstract.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448278 | PMC |
http://dx.doi.org/10.1186/s40168-024-01910-0 | DOI Listing |
Iran J Microbiol
December 2024
Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
Background And Objectives: Plant growth-promoting rhizobacteria (PGPR) with a diverse set of traits can improve crop yield in agriculture. The current study aimed to evaluate the potential of multi-trait PGPR isolates as inoculants for maize growth.
Materials And Methods: In this study, 23 bacterial isolates were initially screened from maize plant rhizosphere.
BMC Microbiol
December 2024
TCM (Traditional Chinese Medicine), Huzhou Central Hospital, Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China.
Background: Saffron (Crocus sativus L.) is a valuable herb. With the increasing demand for saffron, people are starting to focus on how to increase its yields.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil.
Background: Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of , a native South American plant and one that is economically useful in the whole of the Amazon.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India.
Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.
View Article and Find Full Text PDFPeerJ
December 2024
Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde City, Hebei Province, China.
Rhizosphere microorganisms are important factors affecting herb quality and secondary metabolite accumulation. In this study, we investigated the diversity of rhizosphere microbial communities (bacteria and fungi) and their correlations with soil physicochemical properties and active compounds of (baicalin, oroxindin, baicalein, wogonin, and oroxylin A) from cultivated with three different origins high-throughput sequencing and correlation analysis to further clarify the role of soil factors in the accumulation of the active compounds of . The results are summarized as follows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!