Background: Despite advances made in curbing the global malaria burden since the 2000s, progress has stalled, in part due to a plateauing of the financing available to implement needed interventions. In 2020, approximately 3.3 billion USD was invested globally for malaria interventions, falling short of the targeted 6.8 billion USD set by the GTS, increasing the financial gap between desirable and actual investment. Models for malaria control optimization are used to disentangle the most efficient interventions or packages of interventions for inherently constrained budgets. This systematic review aimed to identify and characterise models for malaria control optimization for resource allocation in limited resource settings and assess their strengths and limitations.
Methods: Following the Prospective Register of Systematic Reviews and Preferred reporting Items for Systematic Reviews and Meta-Analysis guidelines, a comprehensive search across PubMed and Embase databases was performed of peer-reviewed literature published from inception until June 2024. The following keywords were used: optimization model; malaria; control interventions; elimination interventions. Editorials, commentaries, opinion papers, conference abstracts, media reports, letters, bulletins, pre-prints, grey literature, non-English language studies, systematic reviews and meta-analyses were excluded from the search.
Results: The search yielded 2950 records, of which 15 met the inclusion criteria. The studies were carried out mainly in countries in Africa (53.3%), such as Ghana, Nigeria, Tanzania, Uganda, and countries in Asia (26.7%), such as Thailand and Myanmar. The most used interventions for analyses were insecticide-treated bed nets (93.3%), IRS (80.0%), Seasonal Malaria Chemoprevention (33.3%) and Case management (33.3%). The methods used for estimating health benefits were compartmental models (40.0%), individual-based models (40.0%), static models (13.0%) and linear regression model (7%). Data used in the analysis were validated country-specific data (60.0%) or non-country-specific data (40.0%) and were analysed at national only (40.0%), national and subnational levels (46.7%), or subnational only levels (13.3%).
Conclusion: This review identified available optimization models for malaria resource allocation. The findings highlighted the need for country-specific analysis for malaria control optimization, the use of country-specific epidemiological and cost data in performing modelling analyses, performing cost sensitivity analyses and defining the perspective for the analysis, with an emphasis on subnational tailoring for data collection and analysis for more accurate and good quality results. It is critical that the future modelling efforts account for fairness and target at risk malaria populations that are hard-to-reach to maximize impact.
Trial Registration: PROSPERO Registration number: CRD42023436966.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448400 | PMC |
http://dx.doi.org/10.1186/s12936-024-05118-3 | DOI Listing |
Pathogens
January 2025
National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
Schistosomiasis is a neglected tropical disease and the second most common parasitic disease after malaria. While praziquantel remains the primary treatment, concerns about drug resistance highlight the urgent need for new drugs and effective vaccines to achieve sustainable control. Previous proteomic studies from our group revealed that the expression of glycosyltransferase and nicastrin as proteins was higher in single-sex males than mated males, suggesting their critical roles in parasite reproduction and their potential as vaccine candidates.
View Article and Find Full Text PDFInsects
December 2024
Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro P.O. Box 53, Tanzania.
Interspecific competition between mosquito larvae may affects adult vectorial capacity, potentially reducing disease transmission. It also influences population dynamics, and cannibalistic and predatory behaviors. However, knowledge of interspecific competition between and species is limited.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Entomology, University of Arizona, Tucson, AZ 85721, USA.
Pantothenate (Pan), or vitamin B5, is essential for the synthesis of co-enzyme A (CoA), acetyl-CoA, and numerous downstream physiological processes. We previously demonstrated that Pan is not only essential for mosquito survival, but also for the development of malaria parasites within the mosquito, suggesting that targeting Pan and CoA biosynthesis may be a novel approach for malaria control. However, little is known about how Pan is acquired and mobilized within the mosquito.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Department of Nursing Sciences, Faculty of Basic Medical and Health Sciences, Walter Sisulu University, Nelson Mandela Drive Campus, Mthatha 5117, South Africa.
Malaria in pregnancy is a global health problem because it causes anemia in the mother and may result in abortion, stillbirth, uterine growth retardation, and low birth weight in the newborn. The purpose of this study was to assess the effects of HEI on knowledge and adherence to intermittent preventive treatment of malaria among pregnant women at secondary health facilities in Benue State, Nigeria. This quasi-experimental study included pre-, intervention, and post-intervention.
View Article and Find Full Text PDFParasit Vectors
January 2025
National Institute for Medical Research, Dar es Salaam, Tanzania.
Background: Despite implementation of effective interventions in the past two decades, malaria is still a major public health problem in Tanzania. This study assessed the prevalence and drivers of malaria infections among symptomatic and asymptomatic members of selected communities from five regions with varying endemicity in mainland Tanzania.
Methods: A cross-sectional community survey was conducted in five districts, including one district/region in Kagera, Kigoma, Njombe, Ruvuma and Tanga from July to August 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!