Congenital heart defects are leading causes of neonatal mortality and are often associated with placental abnormalities, but mechanisms linking placenta and heart development are poorly understood. Herein, we investigated a potential signaling network connecting the placenta and nascent heart in mice. We found that fetal hearts exposed to media conditioned by placental tissue or differentiated wild-type trophoblast stem (TS) cells, but not undifferentiated TS cells, showed increased heart rate and epicardial cell outgrowth. This effect was not observed when hearts were exposed to media from TS cells lacking OVO-Like 2, a transcription factor required for trophoblast differentiation and placental development. Trophoblasts released abundant extracellular vesicles into media, and these vesicles were sufficient to mediate cardio-promoting effects. Our findings provide a potential mechanism whereby the placenta communicates with the fetal heart to promote cardiac morphogenesis, and offers insight into the link between poor placentation and a higher incidence of heart defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450004 | PMC |
http://dx.doi.org/10.1038/s42003-024-06938-4 | DOI Listing |
J Biomed Sci
January 2025
Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
Mosquito-borne flaviviruses represent a public health challenge due to the high-rate endemic infections, severe clinical outcomes, and the potential risk of emerging global outbreaks. Flavivirus disease pathogenesis converges on cellular factors from vectors and hosts, and their interactions are still unclear. Exosomes and microparticles are extracellular vesicles released from cells that mediate the intercellular communication necessary for maintaining homeostasis; however, they have been shown to be involved in disease establishment and progression.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of General, Visceral and Thoracic Surgery, German Armed Forces Central Hospital, Koblenz, Germany.
Liquid biomarkers are essential in trauma cases and critical care and offer valuable insights into the extent of injury, prognostic predictions, and treatment guidance. They can help assess the severity of organ damage (OD), assist in treatment decisions and forecast patient outcomes. Notably, small extracellular vesicles, particularly those involved in splenic trauma, have been overlooked.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
Extracellular vesicles (EVs) are membrane-bound vesicles that are shed or secreted from the cell membrane and enveloped by a lipid bilayer. They possess stability, low immunogenicity, and non-cytotoxicity, exhibiting extensive prospects in regenerative medicine (RM). However, natural EVs pose challenges, such as insufficient targeting capabilities, potential biosafety concerns, and limited acquisition pathways.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address:
Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in the field of biomedical exploration due to their exceptional properties. There is fascinating evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine.
View Article and Find Full Text PDFPlacenta
December 2024
Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand. Electronic address:
Introduction: Placental extracellular vesicles (EVs), lipid-enclosed particles released from the placenta, can facilitate intercellular communication and are classified as micro- or nano-EVs depending on size. Placental EVs contain molecules associated with cell proliferation and death. In this study, we investigated whether treating human ovarian tumour explants with placental EVs could induce ovarian tumour cell death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!