Golden Gate cloning has revolutionized synthetic biology. Its concept of modular, highly characterized libraries of parts that can be combined into higher order assemblies allows engineering principles to be applied to biological systems. The basic parts, typically stored in Level 0 plasmids, are sequence validated by the method of choice and can be combined into higher order assemblies on demand. Higher order assemblies are typically transcriptional units, and multiple transcriptional units can be assembled into multi-gene constructs. Higher order Golden Gate assembly based on defined and validated parts usually does not introduce sequence changes. Therefore, simple validation of the assemblies, e.g., by colony polymerase chain reaction (PCR) or restriction digest pattern analysis is sufficient. However, in many experimental setups, researchers do not use defined parts, but rather part libraries, resulting in assemblies of high combinatorial complexity where sequencing again becomes mandatory. Here, we present a detailed protocol for the use of a highly multiplexed dual barcode amplicon sequencing using the Nanopore sequencing platform for in-house sequence validation. The workflow, called DuBA.flow, is a start-to-finish procedure that provides all necessary steps from a single colony to the final easy-to-interpret sequencing report.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-4220-7_10DOI Listing

Publication Analysis

Top Keywords

higher order
16
golden gate
12
order assemblies
12
highly multiplexed
8
amplicon sequencing
8
combined higher
8
transcriptional units
8
assemblies
6
sequencing
5
validation golden
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!