Natural variation in the promoter of qRBG1/OsBZR5 underlies enhanced rice yield.

Nat Commun

Rice Research Institute, Key Laboratory of Crop Molecular Improvement, Academy of Agricultural Sciences, Ministry of Education, Southwest University, Chongqing, 400715, China.

Published: October 2024

AI Article Synopsis

  • * Researchers discovered that a rare variation in the qRBG1 promoter leads to increased expression, resulting in larger rice grains, while its overexpression leads to smaller grains.
  • * The qRBG1 gene encodes a protein called OsBZR5, which interacts with other proteins to form a regulatory network that influences grain size, providing insights for enhancing rice production.

Article Abstract

Seed size, a key determinant of rice yield, is regulated by brassinosteroid (BR); however, the BR pathway in rice has not been fully elucidated. Here, we report the cloning and characterization of the quantitative trait locus Rice Big Grain 1 (qRBG1) from single-segment substitution line Z499. Our data show that qRBG1 is an unselected rare promoter variation that reduces qRBG1 expression to increase cell number and size, resulting in larger grains, whereas qRBG1 overexpression causes smaller grains in recipient Nipponbare. We demonstrate that qRBG1 encodes a non-canonical BES1 (Bri1-EMS-Suppressor1)/BZR1(Brassinazole-Resistant1) family member, OsBZR5, that regulates grain size upon phosphorylation by OsGSK2 (GSK3-like Kinase2) and binding to D2 (DWARF2) and OFP1 (Ovate-Family-Protein1) promoters. qRBG1 interacts with OsBZR1 to synergistically repress D2, and to antagonistically mediate OFP1 for grain size. Our results reveal a regulatory network controlling grain size via OsGSK2-qRBG1-OsBZR1-D2-OFP1 module, providing a target for improving rice yield.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449933PMC
http://dx.doi.org/10.1038/s41467-024-52928-9DOI Listing

Publication Analysis

Top Keywords

rice yield
12
grain size
12
qrbg1
6
rice
5
size
5
natural variation
4
variation promoter
4
promoter qrbg1/osbzr5
4
qrbg1/osbzr5 underlies
4
underlies enhanced
4

Similar Publications

Coordinated regulation of two LacI family regulators, GvmR and GvmR2, on guvermectin production in .

Synth Syst Biotechnol

November 2024

Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin, 150030, China.

Guvermectin, a purine nucleoside natural product produced by the genus S, has recently been registered as a new biopesticide to boost rice yield. Despite its economic and agricultural significance, the regulatory mechanisms of guvermectin biosynthesis remain essentially unknown, hindering industrial production and widespread agricultural application. Here, we examined the roles of two LacI family regulators, and , located within and adjacent to the guvermectin biosynthesis cluster, respectively, in guvermectin production in NEAU6.

View Article and Find Full Text PDF

In the rapid climate change scenario and subsequent rainfall patterns, drought has emerged as a bottleneck for crop production across crops, especially in rainfed rice. Drought significantly affects the development and production of most modern rice cultivars. Thus, recent breeding efforts have aimed to integrate drought tolerance traits in existing rice varieties through conventional and molecular approaches.

View Article and Find Full Text PDF

Monitoring of agricultural progress in rice-wheat rotation area based on UAV RGB images.

Front Plant Sci

January 2025

Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, China.

Real-time monitoring of rice-wheat rotation areas is crucial for improving agricultural productivity and ensuring the overall yield of rice and wheat. However, the current monitoring methods mainly rely on manual recording and observation, leading to low monitoring efficiency. This study addresses the challenges of monitoring agricultural progress and the time-consuming and labor-intensive nature of the monitoring process.

View Article and Find Full Text PDF

Screening and identification of two novel phosphate-solubilizing strains and their role in enhancing phosphorus uptake in rice.

Front Microbiol

January 2025

Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory/Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, China.

Low phosphorus (P) use efficiency significantly impacts rice yields. An environmentally friendly approach to increase phosphorus absorption and utilization in rice involves the exploration of phosphorus-solubilizing fungal resources. This study aimed to isolate and characterize fungal strains from the rice rhizosphere and assess their phosphate solubilization capabilities, plant-growth-promoting (PGP) traits, and mechanisms involved.

View Article and Find Full Text PDF

The development of thickened fermented rice milk formulation for people with dysphagia: A view of multiple in vitro simulation methods.

Food Res Int

February 2025

College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing 400715 China. Electronic address:

Based on the huge blank of thickened fluid staple food for people with dysphagia, multiple in vitro simulations were utilized to develop the thickened fermented rice milk. Here, the effect of amylase content, hydrolysis time and thickener content were considered. The rheological study and Cambridge throat evaluation revealed that hydrolysis could significantly reduce the viscosity and yield stress of fermented rice milk, accompanied by the decreased swallowing residue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!