The electroreduction of nitrate offers a promising, sustainable, and decentralized route to generate valuable ammonia. However, a key challenge in the nitrate reduction reaction is the energy efficiency of the reaction, which requires both a high ammonia yield rate and a high Faradaic efficiency of ammonia at a low working potential (≥-0.2 V versus reversible hydrogen electrode). We propose a bimetallic Co-B/Ru electrocatalyst which utilizes complementary effects of Co-B and Ru to modulate the quantity of adsorbed hydrogen and to favor the specific hydrogenation for initiating nitrate reduction reaction at a low overpotential. This effect enables the catalyst to achieve a Faradaic efficiency for ammonia of 90.4 ± 9.2% and a remarkable half-cell energy efficiency of 40.9 ± 4% at 0 V versus reversible hydrogen electrode. The in-situ electrochemical reconstruction of the catalyst contributes to boosting the ammonia yield rate to a high level of 15.0 ± 0.7 mg h cm at -0.2 V versus reversible hydrogen electrode. More importantly, by employing single-entity electrochemistry coupled with identical location transmission electron microscopy, we gain systematic insights into the correlation between the increase in the catalyst's active sites and its structural transformations during the nitrate reduction reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450097 | PMC |
http://dx.doi.org/10.1038/s41467-024-52780-x | DOI Listing |
Environ Monit Assess
December 2024
Department of Water Engineering, University of Guilan, Rasht, Iran.
The examination of wastewater and effluents flowing into receiving water bodies is crucial for identifying pollutant sources and implementing scenarios to reduce them. In this study, QUAL2kw was used to identify, assess, and predict the pollutant load of a drainage canal located 6 km away from Anzali Wetland. Initially, the model was calibrated and validated with data collected in 2017.
View Article and Find Full Text PDFWater Res X
May 2025
Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia.
Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an essential process in the geochemical iron and nitrogen cycling. This study explores Feammox-based nitrogen removal in a continuous laboratory up-flow bioreactor stimulated by intermittently adding 5 mM Fe(OH) at intervals of approximately two months. The feed was synthetic wastewater with a relatively low ammonium concentration (∼100 mg N/L), yet without organic carbon in order to test its autotrophic nitrogen removal performance.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Department of Pathobiology, Faculty of Veterinary Medicine Bu-Ali Sina University Hamedan Iran.
In this study, chitosan (C)-polyvinyl alcohol (P) edible film containing bio-fabricated nanosilver particles (nAg) (as antimicrobial agent) and beetroot peel extract (BRPE) (as antioxidant agent and pH indicator) was used as spoilage indicator in cold-stored rainbow trout fillets. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (43.02%), reducing power (2.
View Article and Find Full Text PDFJ Environ Qual
December 2024
USDA-ARS National Laboratory for Agriculture and the Environment, Ames, Iowa, USA.
Nutrient losses via subsurface tile cause environmental degradation of aquatic ecosystems. Various management practices are primarily aimed at reduction of nitrate leaching in tile discharge; however, studies on leaching of other nutrients are limited. A replicated plot experiment was initiated in 2016 as part of the Long-Term Agroecosystem Research (LTAR) network Croplands Common Experiment to quantify the effectiveness of management practices on leaching of NO-N, total P, K, and S from drained soils.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
China Auto Information Technology Co., Ltd, Tianjin 300300, People's Republic of China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!