The current state-of-the-art electron-transfer modeling primarily focuses on the kinetics of charge transfer between an electroactive species and an inert electrode. Experimental studies have revealed that the existing Butler-Volmer model fails to satisfactorily replicate experimental voltammetry results for both solution-based and surface-bound redox couples. Consequently, experimentalists lack an accurate tool for predicting electron-transfer kinetics. In response to this challenge, we developed a density functional theory-based approach for accurately predicting current peak potentials by using the Marcus-Hush model. Through extensive cyclic voltammetry simulations, we conducted a thorough exploration that offers valuable insights for conducting well-informed studies in the field of electrochemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492257 | PMC |
http://dx.doi.org/10.1021/acs.jpca.4c04923 | DOI Listing |
J Am Chem Soc
December 2024
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
Direct air capture (DAC) technologies are limited by the poor understanding of the dynamic role of interfaces in modulating the chemisorption of CO from air into solutions. While the reactivity of aqueous amine-based solvents in the bulk environment is strongly inhibited by nonequilibrium solvent effects, promoting DAC at interfaces posits a possibility to reduce the coupling with the solvent and significantly accelerate DAC. Building on an experimentally proven concept to bring an anionic glycine absorbent to the interface through ion-pairing interactions with a positively charged surfactant, we establish the fundamental time scales for key elementary steps involved in DAC with rate theory and enhanced-sampling molecular dynamics simulations.
View Article and Find Full Text PDFCommun Chem
December 2024
Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
Under physiological conditions in peptides or proteins, the -AsnGly- motif autonomously rearranges within hours/days to β-Asp and α-Asp containing sequence, via succinimide intermedier. The formation of the succinimide is the rate-limiting step, with a strong pH and temperature dependence. We found that Arg(+) at the (n + 2) position (relative to Asn in the n position) favors isomerisation by forming a transition-state like structure, whereas Glu(-) disfavors isomerisation by adopting a β-turn like conformer.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China.
Dimethyl sulfide (CHSCH) is the largest natural source of atmospheric sulfur. Bis(trifluoromethyl) sulfides (CFSCF) are one of the perfluorinated thioethers with great interest as the new refrigerant fluid and dielectric replacement gas for the sake of environmental concern. In order to clarify the effect of fluorine substitution, degradation mechanisms and kinetics for the reactions of CHSCH and CFSCF with OH radicals in the atmosphere have been calculated comprehensively in a comparative manner using various high-level methods.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
We present an theoretical method to calculate the resonant Auger spectrum in the presence of ultrafast dissociation. The method is demonstrated by deriving the L-VV resonant Auger spectrum mediated by the 2pσ* resonance in HCl, where the electronic Auger decay and nuclear dissociation occur on the same time scale. The Auger decay rates are calculated within the one-center approximation and are shown to vary significantly with the inter-nuclear distance.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
National Key Laboratory of Solid Propulsion, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China.
Energetic ionic liquids have a high potential to replace the traditional monopropellant hydrazine as a high-energy green propellant and can be widely used in aerospace technology. A high-energy ionic liquid─HEHN has also gained extensive attention from researchers. To explore the reaction mechanism of HEHN and establish a chemical kinetic model for high-energy ionic liquid propellants, 28 hydrogen abstraction reactions of HEH, which is the main decomposition product of HEHN, were investigated in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!