The proinflammatory cytokine interferon gamma (IFNγ) is upregulated in a variety of infections and contributes to bone marrow failure through hematopoietic stem cell (HSC) activation and subsequent exhaustion. The cell-surface protein, bone marrow stromal antigen 2 (BST2), is a key mediator of this process, because it is induced upon IFN stimulation and required for IFN-dependent HSC activation. To identify the mechanism by which BST2 promotes IFN-dependent HSC activation, we evaluated its role in niche localization, immune cell function, lipid raft formation, and intracellular signaling. Our studies indicated that knockout (KO) of BST2 in a murine model does not disrupt immune cell responses to IFN-inducing mycobacterial infection. Furthermore, intravital imaging studies indicate that BST2 KO does not disrupt localization of HSCs relative to endothelial or osteoblastic niches in the bone marrow. However, using imaging-based flow cytometry, we found that IFNγ treatment shifts the lipid raft polarity of wild-type (WT) but not Bst2 hematopoietic stem and progenitor cells (HSPCs). Furthermore, RNAseq analysis, reverse-phase protein array and western blot analysis of HSPCs indicate that BST2 promotes ERK1/2 phosphorylation during IFNγ-mediated stress. Overall, we find that BST2 facilitates HSC division by promoting cell polarization and ERK activation, thus elucidating a key mechanism of IFN-dependent HSPC activation. These findings inform future approaches in the treatment of cancer and bone marrow failure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exphem.2024.104653 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651051 | PMC |
Arthrosc Tech
November 2024
Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
An incomplete discoid lateral meniscus is often associated with radial tears, which cause meniscal extrusion and result in poor healing outcomes. Centralization has recently been used as a surgical method to reduce extrusion. However, various repair techniques use single point of fixation sutures exclusively on the femoral side, potentially hindering healing.
View Article and Find Full Text PDFArthrosc Tech
November 2024
Department of Orthopedics and Traumatology, Ankara Etlik City Hospital, Ankara, Turkey.
Osteonecrosis of the femoral head can lead to end-stage osteoarthritis when left untreated. The incidence has been on the rise since the onset of the COVID-19 pandemic. Core decompression of the femoral head is usually the first line of surgical treatment when conservative options fail.
View Article and Find Full Text PDFBiomater Res
December 2024
Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
Despite that the clinical application of titanium-based implants has achieved great success, patients' own diseases and/or unhealthy lifestyle habits often lead to implant failure. Many studies have been carried out to modify titanium implants to promote osseointegration and implant success. Recent studies showed that exosomes, proactively secreted extracellular vesicles by mammalian cells, could selectively target and modulate the functions of recipient cells such as macrophages, nerve cells, endothelial cells, and bone marrow mesenchymal stem cells that are closely involved in implant osseointegration.
View Article and Find Full Text PDFTwo novel alleles, HLA-DRB1*14:270 and HLA-DPA1*01:222, were discovered in Russian individuals.
View Article and Find Full Text PDFKorean J Pain
December 2024
School of Anesthesia, Shanxi Medical University, Shanxi, China.
Background: Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!