Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To develop an optimized controlled-release system based on temperature-sensitive poly(N-isopropylacrylamide) (PNIPAAm) nanofibers, we prepared three types of temperature-controlled preservative films. These films were composed of PNIPAAm, polyvinyl alcohol (PVA), polylactic acid (PLA), and lemon essential oil (LEO), and were fabricated using uniaxial, coaxial, and layered spinning techniques. The nanofiber films obtained by layered spinning exhibited a sandwich structure, demonstrating superior physical barrier properties, mechanical strength, and thermal resistance. Fourier-transform infrared spectroscopy confirmed the hydrogen bonding interaction between the polylactic acid/lemon essential oil and PNIPAAm layers. LEO release tests showed that PNIPAAm functions as a temperature-responsive switch, suppressing LEO release below and promoting it above the critical solution temperature. After a sustained release at 40 °C for 5 days, the layered film maintained significant antibacterial activity, effectively extending the shelf life of blackberries to 4 days. Considering its physical barrier, mechanical, and sustained-release properties, the layered film derived from PNIPAAm shows great potential as an intelligent temperature-controlled cling film to effectively extend the freshness of perishable products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!