A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Temperature-sensitive poly(N-isopropylacrylamide)/polylactic acid/lemon essential oil nanofiber films prepared via different electrospinning processes: Controlled release and preservation effect. | LitMetric

Temperature-sensitive poly(N-isopropylacrylamide)/polylactic acid/lemon essential oil nanofiber films prepared via different electrospinning processes: Controlled release and preservation effect.

Int J Biol Macromol

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Published: November 2024

To develop an optimized controlled-release system based on temperature-sensitive poly(N-isopropylacrylamide) (PNIPAAm) nanofibers, we prepared three types of temperature-controlled preservative films. These films were composed of PNIPAAm, polyvinyl alcohol (PVA), polylactic acid (PLA), and lemon essential oil (LEO), and were fabricated using uniaxial, coaxial, and layered spinning techniques. The nanofiber films obtained by layered spinning exhibited a sandwich structure, demonstrating superior physical barrier properties, mechanical strength, and thermal resistance. Fourier-transform infrared spectroscopy confirmed the hydrogen bonding interaction between the polylactic acid/lemon essential oil and PNIPAAm layers. LEO release tests showed that PNIPAAm functions as a temperature-responsive switch, suppressing LEO release below and promoting it above the critical solution temperature. After a sustained release at 40 °C for 5 days, the layered film maintained significant antibacterial activity, effectively extending the shelf life of blackberries to 4 days. Considering its physical barrier, mechanical, and sustained-release properties, the layered film derived from PNIPAAm shows great potential as an intelligent temperature-controlled cling film to effectively extend the freshness of perishable products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136217DOI Listing

Publication Analysis

Top Keywords

essential oil
12
acid/lemon essential
8
nanofiber films
8
layered spinning
8
physical barrier
8
leo release
8
layered film
8
pnipaam
5
temperature-sensitive polyn-isopropylacrylamide/polylactic
4
polyn-isopropylacrylamide/polylactic acid/lemon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!