AI Article Synopsis

  • A study developed a flexible biopolymer-based antimicrobial wound dressing using chitosan-agarose (CS-AG) and chamomile flower extract (CH), aimed at improving wound healing and combating bacterial infections.
  • The CS-AG bioscaffold exhibits strong physical properties such as high tensile strength and enhanced thermal stability, verified by various scientific methods.
  • The bioscaffold not only demonstrates effective antibacterial activity against harmful bacteria but also supports cell viability, making it a promising option for drug release systems and tissue engineering applications.

Article Abstract

A flexible biopolymer-based antimicrobial wound dressing has the potential to alleviate the burden of bacterial infections in wounds by enhancing antimicrobial effectiveness and promoting faster wound healing. This study focuses on the development of a highly flexible chitosan-agarose (CS-AG) bioscaffold, incorporating Matricaria recutita chamomile flower extract (CH) through a conventional casting method. The flexible CS-AG bioscaffold's physiochemical properties were confirmed by FTIR, indicating secondary interactions, and XRD, showing its crystalline structure. The addition of CH to the optimized CS-AG bioscaffold resulted in significant tensile strength (17.28 ± 0.33 MPa), distinctive structural morphology (SEM), surface roughness (AFM), contact angle, improved thermal properties (DSC), and enhanced thermal stability (TGA). Furthermore, the CH-infused bioscaffold significantly increased swelling capacity (~81.09 ± 1.74 % over 48 h), and degradation profile (~52 % over 180 h). The release studies of CS-AG-CH bioscaffold demonstrate controlled release of CH with in the bioscaffold at different pH conditions. The bioscaffold demonstrated effective antibacterial activity against S. aureus and E. coli strains. Additionally, cytotoxicity assays indicated that the bioscaffold supports better cell viability and proliferation in fibroblast (NIH 3T3) cell lines. Consequently, this antimicrobial bioscaffold shows promise as a drug release system and biocompatible wound dressing suitable for tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136195DOI Listing

Publication Analysis

Top Keywords

wound dressing
12
bioscaffold
9
highly flexible
8
matricaria recutita
8
antimicrobial wound
8
cs-ag bioscaffold
8
fabrication highly
4
flexible
4
flexible biopolymeric
4
biopolymeric chitosan/agarose
4

Similar Publications

BACKGROUND Perineal injuries affecting the scrotum and penis are rare in pediatric patients, owing to the protective anatomy of the male genitalia. However, when such injuries do occur, timely surgical intervention is crucial. This kind of damage might not be life-threatening but could cause functional disorders and have a huge impact on the patients' psychological condition if not treated appropriately, especially as they enter puberty.

View Article and Find Full Text PDF

Complex wound closure scenarios necessitate the development of advanced wound dressings that can effectively address the challenges of filling irregularly shaped wounds and managing fatigue failures encountered in daily patient activities. To tackle these issues, we develop a multifunctional hydrogel from natural polysaccharides and polypeptides with injectability and self-healing properties for promoting full-time and multipurpose wound healing. Synthesized through dynamic Schiff base linkages between oxidized hyaluronic acid (OHA), ε-polylysine (ε-PL), and quaternized chitosan (QCS), the OHA/ε-PL/QCS hydrogel can gel rapidly within 50 s.

View Article and Find Full Text PDF

Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.

View Article and Find Full Text PDF

Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.

View Article and Find Full Text PDF

Magnetic Nanoactuator-Protein Fiber Coated Hydrogel Dressing for Well-Balanced Skin Wound Healing and Tissue Regeneration.

ACS Nano

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.

Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!