The increase in publicly available human single-cell datasets, encompassing millions of cells from many donors, has significantly enhanced our understanding of complex biological processes. However, the accessibility of these datasets raises significant privacy concerns. Due to the inherent noise in single-cell measurements and the scarcity of population-scale single-cell datasets, recent private information quantification studies have focused on bulk gene expression data sharing. To address this gap, we demonstrate that individuals in single-cell gene expression datasets are vulnerable to linking attacks, where attackers can infer their sensitive phenotypic information using publicly available tissue or cell-type-specific expression quantitative trait loci (eQTLs) information. We further develop a method for genotype prediction and genotype-phenotype linking that remains effective without relying on eQTL information. We show that variants from one study can be exploited to uncover private information about individuals in another study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568916 | PMC |
http://dx.doi.org/10.1016/j.cell.2024.09.012 | DOI Listing |
Neoplasia
December 2024
Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its aggressive nature and dismal prognosis, largely attributed to its unique tumor microenvironment. However, the molecular mechanisms by which tumor-associated macrophages (TAMs) promote PDAC progression, particularly the role of β-catenin signaling in regulating TAM phenotype and function, remain incompletely understood. Initially, we performed comprehensive analyses of RNA-seq and single-cell RNA-seq (scRNA-seq) datasets to investigate OSM and LOXL2 expression patterns in PDAC.
View Article and Find Full Text PDFCell Rep
December 2024
State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China; Cellular Screening Center, The University of Chicago, Chicago, IL, USA; Department of Neurology, Center for Reproductive Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. Electronic address:
In male animals, spermatogonia in testes differentiate into sperm, one of the most diverse cell types across species. Despite the evolutionary retention of key genes essential for spermatogenesis, the extent of their conservation remains unclear. To explore the genetic basis of spermatogenesis under strong selective pressure, we compare single-cell RNA sequencing (scRNA-seq) datasets from the testes of humans, mice, and fruit flies.
View Article and Find Full Text PDFCancer Immunol Immunother
December 2024
Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Colorectal cancer (CRC) is the most common digestive cancer in the world. Microsatellite stability (MSS) and microsatellite instability (MSI-high) are important molecular subtypes of CRC closely related to tumor occurrence and progression and immunotherapy efficacy. The presence of CD8 CXCR5 follicular cytotoxic T (T) cells is strongly associated with autoimmune disease and CD8 effector function.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2024
Moscow Clinical Scientific Center N.A. A.S. Loginov, Moscow, 111123, Russia.
Purpose: Determining the primary origin of non-organ-confined neuroendocrine tumors (NETs) for accurate diagnosis and management. Neuroendocrine tumors are rare neoplasms with diverse clinical behaviors. Determining their primary origin remains challenging in cases of non-organ-confined NETs.
View Article and Find Full Text PDFMamm Genome
December 2024
Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that currently affects approximately 1-2% of the global population. Genome-wide studies have identified several loci associated with ASD; however, pinpointing causal variants remains elusive. Therefore, functional studies are essential to discover potential therapeutics for ASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!