Filament formation activates protease and ring nuclease activities of CRISPR Lon-SAVED.

Mol Cell

Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257 Vilnius, Lithuania. Electronic address:

Published: November 2024

To combat phage infection, type III CRISPR-Cas systems utilize cyclic oligoadenylates (cA) signaling to activate various auxiliary effectors, including the CRISPR-associated Lon-SAVED protease CalpL, which forms a tripartite effector system together with an anti-σ factor, CalpT, and an ECF-like σ factor, CalpS. Here, we report the characterization of the Candidatus Cloacimonas acidaminovorans CalpL-CalpT-CalpS. We demonstrate that cA binding triggers CalpL filament formation and activates it to cleave CalpT within the CalpT-CalpS dimer. This cleavage exposes the CalpT C-degron, which targets it for further degradation by cellular proteases. Consequently, CalpS is released to bind to RNA polymerase, causing growth arrest in E. coli. Furthermore, the CalpL-CalpT-CalpS system is regulated by the SAVED domain of CalpL, which is a ring nuclease that cleaves cA in a sequential three-step mechanism. These findings provide key mechanistic details for the activation, proteolytic events, and regulation of the signaling cascade in the type III CRISPR-Cas immunity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2024.09.002DOI Listing

Publication Analysis

Top Keywords

filament formation
8
formation activates
8
ring nuclease
8
type iii
8
iii crispr-cas
8
activates protease
4
protease ring
4
nuclease activities
4
activities crispr
4
crispr lon-saved
4

Similar Publications

Klp2-mediated Rsp1-Mto1 colocalization inhibits microtubule-dependent microtubule assembly in fission yeast.

Sci Adv

January 2025

MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.

Microtubule assembly takes place at the centrosome and noncentrosomal microtubule-organizing centers (MTOCs). However, the mechanisms controlling the activity of noncentrosomal MTOCs are poorly understood. Here, using the fission yeast as a model organism, we demonstrate that the kinesin-14 motor Klp2 interacts with the J-domain Hsp70/Ssa1 cochaperone Rsp1, an inhibitory factor of microtubule assembly, and that Klp2 is required for the proper localization of Rsp1 to microtubules.

View Article and Find Full Text PDF

Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, Shanghai, China.

Background: Pathological tau plays critical roles in many neurodegenerative diseases (NDD), including Alzheimer's disease (AD). However, the mechanisms underlying the initial tau pathogenesis are largely unknown. Extensive tau pathology has been observed in the brains with chronic traumatic encephalopathy (CTE), suggesting repeated traumatic brain injury (rTBI) correlates with tau pathogenesis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Tel Aviv university, Tel Aviv, Israel, Israel.

Background: Amyloid filaments formation is a complex kinetic and thermodynamic process. The dependence of peptide polymerization on peptide-peptide interactions to form a β-pleated sheet fibrils and the stimulatory influence of other proteins on the reaction suggest that amyloid formation may be subject to modulation METHOD: In vitro formation of β-amyloid was induced by incubation of an aqueous solution of AβP (10 mg/ml) for 7 days at 37°C. The extent of β-amyloid formation and disaggregation were monitored using a panel of well characterized mAbs raised against soluble AβP fragments.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.

Background: Reversible post-translational modifications, phosphorylation and dephosphorylation, on tau protein play a critical role in the microtubule (MT) modulation. However, abnormal tau phosphorylation, which occurs in tauopathies such as Alzheimer's disease (AD), causes the dissociation of tau from MTs. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments (PHF), and insoluble neurofibrillary tangles (NFTs), a hallmark of AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!