Lilium 'Siberia' is a commercially significant cut flower worldwide with an elegant shape and appealing scent, originating from the release of monoterpenes. However, the regulatory mechanism underlying lily monoterpenes has been largely unexplored. Here, a MYB transcription factor from 'Siberia' petals, LiSRM1, whose expression was negatively associated with monoterpene release. Subcellular localization analysis indicated that LiSRM1 was localized to the nucleus. A virus-induced gene silencing (VIGS) assay showed that silencing of LiSRM1 not only significantly increased the synthesis of linalool and ocimene, but also elevated the expression of LiLiS and LiOcS, respectively. Transient overexpression of LiSRM1 exerted opposite effects. Furthermore, yeast one-hybrid assays (Y1H) and dual-luciferase assays (LUC) demonstrated that LiSRM1 directly bound the promoters of LiLiS and LiOcS, respectively, and repressed their expression. Taken together, the results suggested that LiSRM1 negatively regulated monoterpene release and mediated the expression of LiLiS and LiOcS in Lilium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2024.109167 | DOI Listing |
Plant Physiol Biochem
November 2024
College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, China. Electronic address:
Lilium 'Siberia' is a commercially significant cut flower worldwide with an elegant shape and appealing scent, originating from the release of monoterpenes. However, the regulatory mechanism underlying lily monoterpenes has been largely unexplored. Here, a MYB transcription factor from 'Siberia' petals, LiSRM1, whose expression was negatively associated with monoterpene release.
View Article and Find Full Text PDFFront Plant Sci
November 2022
Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Landscape Architecture, Beijing University of Agriculture, Beijing, China.
is a popular cut flower that is highly favored by consumers due to its snowy white color and strong fragrance, which originates from the release of monoterpenes. However, the underlying molecular mechanism of monoterpene synthesis remains poorly understood. In this study, the content of three main monoterpenes (linalool, ocimene, and myrcene) was examined in 'Siberia', and RNA sequencing of the 11 stages of flower development was conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!