This study aimed to identify umami peptides in corn fermented powder (CFP) and investigate their umami enhancing effect. Ultrafiltration and ethanol precipitation was used to separate the umami peptides in CFP. Dynamic sensory evaluations were used to identify the peptide fraction with the intense umami taste, and the peptides in the fraction were identified by nano-liquid chromatography-tandem mass spectrometry. Subsequently, ten umami-enhancing peptide candidates were screened using an integrated virtual screening strategy. Molecular docking revealed that Ser382, Ser104, Leu334, Glu338 and Glu148 of the T1R1 and T1R3 taste receptors are important amino acid residues for binding of the ten umami peptides. Three umami peptides (VDW, WGDDP, and WPAGE) exhibited the stronger binding affinity with the umami receptors. Moreover, molecular dynamics simulation revealed that the T1R1/T1R3 formed stable complexes with the three umami peptides during the simulation. Sensory evaluation indicated that the three peptides exhibited diverse taste characteristics (detection thresholds:0.0315-0.0625 mg/mL). The sigmoid curve analysis further confirmed peptides were identified as synergistically (VDW and WGDDP) or additively (WPAGE) enhancing the umami of 3 mg/mL MSG solution. This study uncovers the mechanism of umami-peptide-driven taste in fermented corn products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.141449 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!