Irinotecan (CPT-11) is a widely utilized topoisomerase I inhibitor in the treatment of colorectal cancer and other malignant tumors. However, severe and even life-threatening dose-limiting toxicity-delayed diarrhea affects the clinical application of CPT-11. The standard treatment for CPT-11-induced delayed diarrhea is prompt use of loperamide (LPA), however LPA can also cause constipation, diarrhea and even intestinal obstruction and has a high failure rate. Carboxylesterase 2 (CES2) is the main enzyme in the intestinal transformation of CPT-11, which can convert CPT-11 into toxic metabolite SN-38 and produce intestinal toxicity. Inhibiting CES2 activity can block the hydrolysis process of CPT-11 in the intestine and reduce SN-38 accumulation. Additionally, Farnesoid X receptor (FXR) agonists have anti-inflammatory, anti-secretory, and protective functions on intestinal barrier integrity that could potentially alleviate diarrhea. In this study, we investigated for the first time the anti-delayed diarrhea effect of FXR agonists, and the first time identified LE-77 as a potent dual modulator that activates FXR and inhibits CES2 through high-throughput screening. In the CPT-11-induced delayed diarrhea model, LE-77 demonstrated a dual modulator mechanism by activating FXR and inhibiting CES2, thereby reducing the accumulation of SN-38 in the intestine, alleviating intestinal inflammation, preserving intestinal mucosal integrity, and ultimately alleviating delayed diarrhea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2024.107852 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!