Objective: The aim of this study was to identify the molecular prevalence of high-risk HPV infection and the distribution of genotypes present in normal cytology, as well as to determine the vaccination status of our study population.

Methods: 110 cervical samples were taken from individuals, and 1 ml of each sample was added to the Xpert HPV cartridge in the sample compartment before it was placed in the Cepheid GeneXpert system. Detection was performed simultaneously via amplification of the and genes in five fluorescent channels (HPV16, HPV18/45, HPV31/33/35/52/58, HPV51/59, and HPV39/56/66/68a).

Results: 36/110 (33%) of all samples tested were positive for HPV DNA. The predominant genotypes were HPV16 (12.7%) and other pooled HR-HPV types (8.2%). All women who received the Gardasil-9 vaccine (3.6%) had HPV, and infection was associated with travel outside Africa. 96.4% of the screened individuals had not received any HPV vaccine.

Conclusion: Our research confirms a widespread HR-HPV infection in our population and extends the importance of studies on the molecular prevalence of HPV, particularly in women with normal cytology and apparent good health, in view of the cruel lack of public awareness of HPV infections.

Download full-text PDF

Source
http://dx.doi.org/10.36233/0507-4088-239DOI Listing

Publication Analysis

Top Keywords

normal cytology
12
vaccination status
8
molecular prevalence
8
hpv infection
8
hpv
7
molecular detection
4
detection high-risk
4
high-risk papillomaviruses
4
papillomaviruses vaccination
4
status normal
4

Similar Publications

Generation of high avidity T cell receptors (TCRs) reactive to tumor-associated antigens (TAA) is impaired by tolerance mechanisms, which is an obstacle to effective T cell therapies for cancer treatment. NY-ESO-1, a human cancer-testis antigen, represents an attractive target for such therapies due to its broad expression in different cancer types and the restricted expression in normal tissues. Utilizing transgenic mice with a diverse human TCR repertoire, we isolated effective TCRs against NY-ESO-1 restricted to HLA-A*02:01.

View Article and Find Full Text PDF

Posttranscriptional Control of Neural Progenitors Temporal Dynamics During Neocortical Development by Syncrip.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.

The development of the mammalian neocortex is precisely regulated by temporal gene expression, yet the temporal regulatory mechanisms of cortical neurogenesis, particularly how radial glial cells (RGCs) sequentially generate deep to superficial neurons, remain unclear. Here, the hnRNP family member Syncrip (hnRNP Q) is identified as a key modulator of superficial neuronal differentiation in neocortical neurogenesis. Syncrip knockout in RGCs disrupts differentiation and abnormal neuronal localization, ultimately resulting in superficial cortical layer defects as well as learning and memory impairments in mice.

View Article and Find Full Text PDF

We propose a simple mathematical model to describe the mechanical relaxation of cells within a curved epithelial tissue layer represented by an arbitrary curve in two-dimensional space. This model generalises previous one-dimensional models of flat epithelia to investigate the influence of curvature for mechanical relaxation. We represent the mechanics of a cell body either by straight springs, or by curved springs that follow the curve's shape.

View Article and Find Full Text PDF

The autonomous and active Long-Interspersed Element-1 (LINE-1, L1) and the non-autonomous Alu retrotransposon elements, contributing to 30% of the human genome, are the most abundant repeated sequences. With more than 90% of their sequences being methylated in normal cells, these elements undeniably contribute to the global DNA methylation level and constitute a major part of circulating-cell-free DNA (cfDNA). So far, the hypomethylation status of LINE-1 and Alu in cellular and extracellular DNA has long been considered a prevailing hallmark of ageing-related diseases and cancer.

View Article and Find Full Text PDF

Multifaceted roles of UFMylation in health and disease.

Acta Pharmacol Sin

January 2025

Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.

Ubiquitin fold modifier 1 (UFM1) is a newly identified post-translational modifier that is involved in the UFMylation process. Similar to ubiquitination, UFMylation enables the conjugation of UFM1 to specific target proteins, thus altering their stability, activity, or localization. UFM1 chains have the potential to undergo cleavage from their associated proteins via UFM1-specific proteases, thus highlighting a reversible feature of UFMylation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!