Purpose: Glioblastomas are resistant to conventional therapies, including radiotherapy. Our previous study proved that epigenetic regulation influences the radiation response of glioma cells. This study evaluated the role of the acetyltransferase Tip60 on the radiation response.
Material And Methods: Tip60 expression was down-regulated by transfecting specific siRNA's in A7 and MO59K cells with high and low expression of Tip60, respectively, and its effect on survival was assessed. DNA repair was analyzed by foci scoring (γH2AX, Rad51, 53BP1, pATM). The interaction of Tip60 with ATM and DNA-PK was investigated using the specific inhibitors KU55933 and NU7441, respectively.
Results: Knockdown of Tip60 significantly ( < .001) reduced survival in both cell lines, but the effect was more pronounced in A7 cells. ATMi and DNA-PKi significantly reduced the surviving fraction following irradiation. However, no further effect of siTip60 on the radiosensitivity of ATMi treated A7 cells was observed. In contrast, DNA-PKi effectively enhanced the sensitizing effect of siTip60. Mechanistically, siTip60 reduced the number of initial Rad51 and ATM foci formation after irradiation and prevented their dissolution at 24 h. siTip60 had no impact on the formation of 53BP1 and γH2AX foci and did not further affect these end-points if combined with ATMi or DNA-PKi.
Conclusions: Downregulation of Tip60 enhances the radiation sensitivity of both glioma cells and markedly elevates the radiation sensitivity when combined with DNA-PKi. Therefore, treatment with DNA-PK inhibitors represents a promising approach to augment the radiation sensitivity of glioma cell lines with deficient Tip60 activity in a synergistic manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09553002.2024.2409668 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!