is dispensable for zygotic genome activation but essential for morula development.

Science

Department of Developmental and Stem Cell Biology, Institut Pasteur, Université Paris Cité, CNRS UMR3738, Epigenomics, Proliferation, and the Identity of Cells Unit, 75015 Paris, France.

Published: October 2024

Early embryogenesis is driven by transcription factors (TFs) that first activate the zygotic genome and then specify the lineages constituting the blastocyst. Although the TFs specifying the blastocyst's lineages are well characterized, those playing earlier roles remain poorly defined. Using mouse models of the TF , we show that embryos arrest at the early morula stage and exhibit altered lineage specification, frequent mitotic failure, and substantial chromosome segregation defects. Although NR5A2 plays a minor but measurable role during zygotic genome activation, it predominantly acts as a master regulator at the eight-cell stage, controlling expression of lineage-specifying TFs and genes involved in mitosis, telomere maintenance, and DNA repair. We conclude that NR5A2 coordinates proliferation, genome stability, and lineage specification to ensure correct morula development.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.adg7325DOI Listing

Publication Analysis

Top Keywords

zygotic genome
12
genome activation
8
morula development
8
lineage specification
8
dispensable zygotic
4
genome
4
activation essential
4
essential morula
4
development early
4
early embryogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!