Stimulus intensity and temporal configuration interact during bimodal learning and memory in honey bees.

PLoS One

Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.

Published: October 2024

Multimodal integration is a core neural process with a keen relevance during ecological tasks requiring learning and memory, such as foraging. The benefits of learning multimodal signals imply solving whether the components come from a single event. This challenge presumably depends on the timing and intensity of the stimuli. Here, we used simultaneous and alternate presentations of olfactory and visual stimuli, at low and high intensities, to understand how temporal and intensity variations affect the learning of a bimodal stimulus and its components. We relied on the conditioning of the proboscis extension response (PER) to train honey bees to an appetitive learning task with bimodal stimuli precisely controlled. We trained bees to stimuli with different synchronicity and intensity levels. We found that synchronicity, order of presentation, and intensity significantly impacted the probability of exhibiting conditioned PER responses and the latency of the conditioned responses. At low intensities, synchronous bimodal inputs produced maximal multisensory enhancement, while asynchronous temporal orders led to lower performances. At high intensities, the relative advantage of the synchronous stimulation diminished, and asynchronous stimuli produced similar performances. Memory retention was higher for the olfactory component and bimodal stimuli compared to the visual component, irrespective of the training's temporal configuration. Bees retained the asynchronous bimodal configuration to a lesser extent than the synchronous one, depending on the stimulus intensity. We conclude that time (synchrony), order of presentation, and intensity have interdependent effects on bee learning and memory performance. This suggests caution when assessing the independent effects of each factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449348PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309129PLOS

Publication Analysis

Top Keywords

learning memory
12
stimulus intensity
8
temporal configuration
8
honey bees
8
high intensities
8
bimodal stimuli
8
order presentation
8
presentation intensity
8
conditioned responses
8
bimodal
6

Similar Publications

Neuronal Plasma Membranes as Supramolecular Assemblies for Biological Memory.

Langmuir

January 2025

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.

Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.

View Article and Find Full Text PDF

The Role of SIRT1-BDNF Signaling Pathway in Fluoride-Induced Toxicity for Glial BV-2 Cells.

Biol Trace Elem Res

January 2025

Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou Province, China.

Chronic fluorosis is often accompanied by neurological symptoms, leading to attention, memory and learning ability decline and causing tension, anxiety, depression, and other mental symptoms. In the present study, we analyzed the molecular mechanisms of SIRT1-BDNF regulation of PI3K-AKT, MAPK, and FOXO1A in F-treated BV2 cells. The cytotoxic effect of sodium fluoride (NaF) on BV2 cells was assessed using Cell Counting Kit-8 (CCK-8), crystal violet, and 5-ethynyl-2'-deoxyuridine (EdU) staining.

View Article and Find Full Text PDF

Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.

View Article and Find Full Text PDF

Social isolation is a risk factor for cognitive impairment. Adolescents may be particularly vulnerable to these effects, because they are in a critical period of development marked by significant physical, hormonal, and social changes. However, it is unclear if the effects of social isolation on learning and memory are similar in both sexes or if they persist into adulthood after a period of recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!