Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flap endonuclease 1 (FEN1) is a structure-specific endonuclease that plays a critical role in the maintenance of genome integrity. In this work, we demonstrate a novel self-powered electrochemical FEN1 biosensor for potential applications in molecular diagnosis. Porous FeO nanoparticles are first prepared, and single-strand DNA probes are absorbed on the surface of the nanoparticles. Thus, electrochemical species of [Fe(CN)] can be encapsulated inside the porous nanoparticles with the molecular gate of negatively charged DNA. On the other hand, a dumbbell structured DNA probe with 5' flap is designed. FEN1 is able to cleave the flap and activate the CRISPR/Cas system for the digestion of single-stranded DNA around FeO nanoparticles. As a result, the leakage of [Fe(CN)] contributes to an enhanced electrochemical response, which can be used to reveal the level of FEN1. The high sensitivity of this biosensor is due to the application of porous nanomaterials and Mn accelerated CRISPR/Cas cleavage. It succeeds in detection of biological samples and screening of FEN1 inhibitors. Therefore, this proposed method has potential applications in the early diagnosis of diseases and drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c14192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!