ConspectusRecently, helicene derivatives have emerged as an important class of molecules with potential applications spanning over asymmetric catalysis, biological activity, magnetism, spin filtering, solar cells, and polymer science. To harness their full potential, especially as emissive components in circularly polarized organic light-emitting diodes (CP-OLEDs), generating structural chemical diversity and understanding the resulting photophysical and chiroptical properties are crucial. In this Account, we shed light on chemical engineering combining helicene and -heterocyclic carbene (NHC) chemistries to create transition-metal complexes with unique architectures and describe their photophysical and chiroptical attributes. The σ-donating and π-accepting capabilities of the helically chiral π-conjugated NHCs endow the complexes with remarkable structural and electronic features. These characteristics manifest in phenomena such as chirality induction, very long-lived phosphorescence, and strong chiroptical signatures (electronic circular dichroism and circularly polarized luminescence).We describe the different classes of ligands primarily developed in our group by classifying them according to their connection between the helicenic moiety and the imidazole precursor. This connection is essential in determining the degree of π-conjugation and characterizing the emissive state. We comprehensively discuss 6-coordinate, 4-coordinate, and 2-coordinate complexes, delving into their structural nuances and examining how the interplay between metals and auxiliary ligands shapes their photophysical properties, with interpretations enriched by DFT calculations. Helicenes are known to promote intersystem crossing thanks to strong spin-orbit coupling, while metals offer robust frameworks leading to a variety of molecular architectures with specific topologies together with distinct excited-state properties. The electronic configurations and energy levels of the ligand and metal orbitals thus significantly modulate the photophysical and chiroptical behaviors of these complexes. In-depth analysis of chiroptical properties, notably electronic circular dichroism and circularly polarized luminescence, emphasizes the influence of different stereogenic elements on the chiroptical responses across various energy ranges with appealing "match-mismatch" effects. Finally, we describe future prospects of helicene NHCs, particularly in the context of emerging research on cost-effective and abundant transition metals for materials science and for photocatalysis. Indeed, the inherent long-lived MLCT, excited-state delocalization, structural rigidity, and intrinsic chirality of these complexes present intriguing avenues for future investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.4c00275DOI Listing

Publication Analysis

Top Keywords

circularly polarized
12
photophysical chiroptical
12
photophysical properties
8
chiroptical properties
8
electronic circular
8
circular dichroism
8
dichroism circularly
8
chiroptical
7
complexes
6
structural
5

Similar Publications

Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.

View Article and Find Full Text PDF

CsPbBr3 Superstructures with Circularly Polarized Photoluminescence Obtained by the Self-Assembly and Annealing of Nanoclusters.

Angew Chem Int Ed Engl

January 2025

Zhengzhou University, College of Chemistry and Molecular Engineering, No.100 Science Avenue, Zhengzhou City, Henan Province P.R.China., Zhengzhou, Henan, CHINA.

We report a two-step approach to fabricate CsPbBr3 superstructures with strongly circularly polarized photoluminescence by self-assembly of nanoclusters on a substrate, followed by their annealing. In the first step, the nanoclusters self-assemble upon solvent evaporation, a process that forms mesoscopic superstructures whose geometrical arrangement at the µm-scale confers them optical chirality. In the second step, mild annealing of such superstructures induces the coalescence of the nanoclusters, accompanied by a continuous red shift of the photoluminescence up to 530 nm, with preservation of the µm-scale wires bundles and the chiral properties of the sample (glum = 0.

View Article and Find Full Text PDF

B,N-Embedded Helical Nanographenes Showing an Ion-Triggered Chiroptical Switching Function.

Angew Chem Int Ed Engl

January 2025

Okayama Daigaku Daigakuin Shizen Kagaku Kenkyuka, Division of Applied Chemistry, JAPAN.

Intramolecular aromatic oxidative coupling of 3,6-bis(m-terphenyl-2'-yl)carbazole provided a bis(m-terphenyl)-fused carbazole, while that of 3,6-bis(m-terphenyl-2'-yl)-1,8-diphenylcarbazole afforded a bis(quaterphenyl)-fused carbazole. Borylation of the latter furnished a B,N-embedded helical nanographene binding a fluoride anion via a structural change from the three-coordinate boron to the four-coordinate boron. The anionic charge derived from the fluoride anion is stabilized over the expanded p-framework, which leads to the high binding constant (Ka) of 1 × 105 M-1.

View Article and Find Full Text PDF

Circularly polarized organic light-emitting diodes (CP-OLEDs) have significant promise for naked-eye 3D displays. However, most devices are fabricated using vacuum deposition technology, and development of efficient solution-processed CP-OLEDs, particularly those exhibiting low efficiency roll-off, remains a formidable challenge. This research successfully designed and synthesized two pairs of thermally activated delayed fluorescence (TADF) enantiomers through isomer engineering, namely (R/S)-N-5-TPA and (R/S)-N-4-TPA, which features fifth and fourth substitution sites of phthalimide (acceptor) by tri-phenylamine (donor), respectively.

View Article and Find Full Text PDF

Much can be learned about molecular aggregates by modeling their fluorescence-type spectra. In this study, we systematically describe the accuracy of various methods for simulating fluorescence-type linear spectra in a dimer system with a complex system-environment interaction, which serves as a model for various molecular aggregates, including most photosynthetic light-harvesting complexes (LHCs). We consider the approximate full cumulant expansion (FCE), complex time-dependent Redfield (ctR), time-independent Redfield, and modified Redfield methods and calculate their accuracy as a function of the site energy gap and coupling, excitonic energy gap, and dipole factor (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!