The leaf extract of Alnus rugosa (AR) together with the isolated compound baicalein 5,6-dimethyl ether (BME) were investigated for their antioxidant, radical scavenging, antiaging, and neuroprotective properties using the Caenorhabditis elegans model. The stress resistance and antiaging potential of AR and BME were assessed in wild-type N2 and transgenic C. elegans strains CF1553, TJ356, and BA17. Transgenic CL4176 expressing the human amyloid-beta peptide (Aβ) was used as a model for Aβ toxicity, whereas transgenic AM141 expressing polyQ aggregates was employed as a model for Huntington's disease. An in silico molecular docking study using Discovery Studio 4.5 was performed to elucidate the putative binding mode of BME to the active sites of Daf-2 protein, involved in longevity and oxidative stress resistance in C. elegans. BME and AR significantly delayed the appearance of oxidative stress markers in wild-type N2 and transgenic strains TJ356 and CF1553, affecting the DAF-16/FOXO transcription factor subcellular distribution and inducing expression of the sod-3 antioxidative gene. Pretreatment with AR significantly reduced the aging marker lipofuscin accumulation in BA17 worms, its effect was greater than that of epigallocatechin gallate, suggesting a potential antiaging effect. Neuroprotective effects of AR and BME were confirmed in AM141 transgenic worms, inducing a significant reduction in the score of polyQ40::GFP aggregates. Moreover, BME (25 µg/mL) resulted in a significant delay in Aβ-induced paralysis in CL4176 worms. In silico molecular modeling revealed that BME exhibited good fitting scores within the active sites of the Daf-2 protein. AR and BME exert beneficial effects in the modulation of age-related markers and attenuation of neurotoxicity in neurodegenerative disorders. Hence, AR and BME could be recognized as promising antioxidant and neuroprotective natural drug candidates that could be included in neuro-nutraceuticals.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ardp.202400464DOI Listing

Publication Analysis

Top Keywords

stress resistance
12
antiaging neuroprotective
12
bme
9
resistance antiaging
8
baicalein 56-dimethyl
8
56-dimethyl ether
8
alnus rugosa
8
caenorhabditis elegans
8
elegans model
8
wild-type transgenic
8

Similar Publications

Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.

View Article and Find Full Text PDF

Effects of high hydraulic pressure on the short-term retrogradation and digestive properties of Lonicern caerulea berry polyphenol-chestnut starch complexes.

Int J Biol Macromol

December 2024

Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.

Both fresh and processed Chinese chestnuts are susceptible to retrograde hardening, affecting their texture, flavor, and shelf life because of their high starch content. To reduce the short-term retrogradation of chestnut starch during the food processing of chestnut-based products, a complex of Lonicern caerulea berry polyphenols (LCBP) and chestnut starch (CS) was prepared using high hydraulic pressure (HHP). The results showed that LCBP reduced the water separation rate, hardness, elasticity, and short-range order of retrograde CS under HHP and improved light transmission.

View Article and Find Full Text PDF

Porphyra haitanensis proteins (PHP) are natural proteins with various nutritional and biological values. This study was to analyze the composition, stability, and antioxidant activity of PHP before and after simulation gastrointestinal digestion (SGD). Caenorhabditis elegans was used as the model to investigate the functional activity and potential mechanisms of action of the PHP digestion products (PHPDP).

View Article and Find Full Text PDF

Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process.

Sci Total Environ

December 2024

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:

Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.

View Article and Find Full Text PDF

Amino acid transporters participate in the transport and distribution of amino acids in plants and are vital for plant growth and development. Despite their importance, few works have investigated the functions of amino acid permeases (AAP) amino acid transporters in soybean. In this study, we re-identified the AAP family genes in soybean using a new public genome database and cloned a soybean AAP gene renamed GmAAP6-like.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!