Construction of S-scheme g-CN/PbTiO heterojunction and its highly efficient photocatalytic degradation of organic pollutants under simulated sunlight.

Environ Sci Pollut Res Int

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.

Published: October 2024

AI Article Synopsis

  • A new type of photocatalyst called g-CN/PbTiO was made using special methods, and it helps break down pollutants like methyl blue in water when exposed to light.
  • The catalyst works really well, removing 93% of a certain dye after two hours and still doing a good job even after being used five times.
  • Scientists found that certain conditions like pH and water quality don't really change its effectiveness, and it can handle other pollutants, making it great for real-world use.

Article Abstract

This study successfully synthesized a composite photocatalyst g-CN/PbTiO through hydrothermal and calcination methods using PbTiO and g-CN. The catalyst was characterized by XRD, FTIR, Raman, XPS, SEM, TEM, UV-vis DRS, PL, and other techniques. The results indicate that the composite photocatalyst exhibits efficient electron transfer, enhanced light absorption, effective separation and utilization of photogenerated electron-hole pairs, demonstrating superior photocatalytic activity. Under simulated sunlight, the removal efficiency of methyl blue (MB) with an initial concentration of 10 mg/L reaches 93.0% after 120 min. After five cycles, the degradation efficiency of MB is 79.2%, still maintaining 85% of the initial catalytic activity. The pH values in the range of 4.0-7.0, inorganic anions, and water quality have a minimal impact on the photocatalytic degradation of MB. Additionally, the composite photocatalyst exhibits strong removal capabilities for other pollutants, such as tetracycline. Therefore, the prepared catalyst demonstrates good feasibility for practical applications. Free radical quenching experiments indicate that hydroxyl radicals (·OH) are the primary active groups in the photocatalytic degradation of MB. Based on this, a photocatalytic mechanism involving a S-scheme heterojunction has been proposed. This study provides new insights into preparing PbTiO composite semiconductors and constructing novel S-scheme heterojunctions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34987-zDOI Listing

Publication Analysis

Top Keywords

photocatalytic degradation
12
composite photocatalyst
12
simulated sunlight
8
photocatalyst exhibits
8
photocatalytic
5
construction s-scheme
4
s-scheme g-cn/pbtio
4
g-cn/pbtio heterojunction
4
heterojunction highly
4
highly efficient
4

Similar Publications

Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott-Schottky (M-S) and band structure analyses.

View Article and Find Full Text PDF

Bimetallic (Ta/Ti, V, Co, Nb) mesoporous MCM-41 nanoparticles were obtained by direct synthesis and hydrothermal treatment. The obtained mesoporous materials were characterized by XRD, XRF, N adsorption/desorption, SEM, TEM, XPS, Raman, UV-Vis, and PL spectroscopy. A more significant effect was observed on the mesoporous structure, typically for MCM-41, and on optic properties if the second metal (Ti, Co) did not belong to the same Vb group with Ta as V and Nb.

View Article and Find Full Text PDF

Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.

View Article and Find Full Text PDF

Environmentally friendly nanoporous gels are tailor-designed and employed in the adsorption of toxic organic pollutants in wastewater. To ensure the maximum adsorption of the contaminant molecules by the gels, molecular modeling techniques were used to evaluate the binding affinity between the toxic organic contaminants such as methylene blue (MB) and Congo red (CR) and various biopolymers. To generate nanopores in the matrix of the polymeric gels, salt crystals were used as porogen.

View Article and Find Full Text PDF

Visible light-driven photocatalytic degradation of atrazine in aqueous phase: impact of the g-CN/TiO/NiFeO nanocomposite activated by potassium peroxymonosulfate.

Environ Sci Pollut Res Int

December 2024

Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.

The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!