A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cooperativity and halonium transfer in the ternary NCI···CHI···CN halogen-bonded complex: An ab initio gas phase study. | LitMetric

Cooperativity and halonium transfer in the ternary NCI···CHI···CN halogen-bonded complex: An ab initio gas phase study.

J Mol Model

Department of Chemistry and Biochemistry, DePaul University, Chicago, IL, 60614, USA.

Published: October 2024

Context: The strength and nature of the two halogen bonds in the NCI···CHI···CN halogen-bonded ternary complex are studied in the gas phase via ab initio calculations. Different indicators of halogen bond strength were employed to examine the interactions including geometries, complexation energies, Natural Bond Order (NBO) Wiberg bond indices, and Atoms in Molecules (AIM)-based charge density topological properties. The results show that the halogen bond is strong and partly covalent in nature when CHI donates the halogen bond, but weak and noncovalent in nature when CHI accepts the halogen bond. Significant halogen bond cooperativity emerges in the ternary complex relative to the corresponding heterodimer complexes, NCI···CHI and CHI···CN, respectively. For example, the CCSD(T) complexation energy of the ternary complex (-18.27 kcal/mol) is about twice the sum of the complexation energies of the component dimers (-9.54 kcal/mol). The halonium transfer reaction that converts the ternary complex into an equivalent one was also investigated. The electronic barrier for the halonium transfer was calculated to be 6.70 kcal/mol at the CCSD(T) level. Although the MP2 level underestimates and the MP3 overestimates the barrier, their calculated MP2.5 average barrier (6.44 kcal/mol) is close to that of the more robust CCSD(T) level. Insights on the halonium ion transfer reaction was obtained by examining the reaction energy and force profiles along the intrinsic reaction coordinate, IRC. The corresponding evolution of other properties such as bond lengths, Wiberg bond indices, and Mulliken charges provides specific insight on the extent of structural rearrangements and electronic redistribution throughout the entire IRC space.

Methods: The MP2 method was used for geometry optimizations. Energy calculations were performed using the CCSD(T) method. The aug-cc-pVTZ basis set was employed for all atoms other than iodine for which the aug-cc-pVTZ-PP basis set was used instead.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-024-06160-3DOI Listing

Publication Analysis

Top Keywords

halogen bond
20
ternary complex
16
halonium transfer
12
bond
9
nci···chi···cn halogen-bonded
8
gas phase
8
complexation energies
8
wiberg bond
8
bond indices
8
nature chi
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!