Peptide-based drugs are powerful inhibitors of therapeutically relevant protein-protein interactions. Their affinity and selectivity for target proteins are commonly assessed using fluorescence-based assays such as anisotropy/polarization or quantitative microarrays. This study reveals that labeling can perturb peptide/protein binding by more than 1 order of magnitude. We have recently developed inhibitors targeted to the N-terminal Src homology 2 (SH2) domain of oncogenic phosphatase SHP2. Despite their high activity and selectivity, these molecules demonstrated an undesired interaction with the SH2 domain of another protein, known as APS, in a fluorescence microarray assay. Fluorescence anisotropy measurement in solution showed that the dissociation constant was significantly influenced by labeling (∼10 times), and the effect depended on the specific fluorophore and SH2 domain. Notably, displacement assays performed with unlabeled peptides were successfully used to eliminate these artifacts, demonstrating that the inhibitors' affinity for their target is over 1,000 times higher than for APS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c01767 | DOI Listing |
Leuk Lymphoma
January 2025
National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.
Alterations in the RAS pathway underscore the pathogenic complexity of acute myeloid leukemia (AML), yet the full spectrum, including , , , , and , remains to be fully elucidated. In this retrospective study of 735 adult AML patients, the incidence of RAS pathway alterations was 32.4%, each with distinct clinical characteristics.
View Article and Find Full Text PDFOral Dis
December 2024
Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
Objectives: The effects of systemic inflammation on the temporomandibular joint (TMJ) are poorly understood. This study aimed to establish a mouse model to study the effects of systemic inflammation on the TMJ.
Materials And Methods: SKG mice, a BALB/c strain with spontaneous onset of rheumatoid arthritis-like symptoms due to a spontaneous point mutation (W163C) in the gene encoding the SH2 domain of ZAP-70, were treated with zymosan (β-1,3-glucan).
Protein Sci
January 2025
Department of Physics, University of Toronto, Toronto, Ontario, Canada.
The point mutation N642H of the signal transducer and activator of transcription 5B (STAT5B) protein is associated with aggressive and drug-resistant forms of leukemia. This mutation is thought to promote cancer due to hyperactivation of STAT5B caused by increased stability of the active, parallel dimer state. However, the molecular mechanism leading to this stabilization is not well understood as there is currently no structure of the parallel dimer.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Physiological Chemistry, Faculty of Medicine, Philipps University of Marburg, Marburg, Germany.
Mirror-image proteins, composed of D-amino acids, are an attractive therapeutic modality, as they exhibit high metabolic stability and lack immunogenicity. Development of mirror-image binding proteins is achieved through chemical synthesis of D-target proteins, phage display library selection of L-binders and chemical synthesis of (mirror-image) D-binders that consequently bind the physiological L-targets. Monobodies are well-established synthetic (L-)binding proteins and their small size (~90 residues) and lack of endogenous cysteine residues make them particularly accessible to chemical synthesis.
View Article and Find Full Text PDFFront Mol Biosci
December 2024
Department of Chemistry, Western Washington University, Bellingham, WA, United States.
Cellular signaling networks are modulated by multiple protein-protein interaction domains that coordinate extracellular inputs and processes to regulate cellular processes. Several of these domains recognize short linear motifs, or SLiMs, which are often highly conserved and are closely regulated. One such domain, the Src homology 3 (SH3) domain, typically recognizes proline-rich SLiMs and is one of the most abundant SLiM-binding domains in the human proteome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!