The aim of this study was to determine factors influencing observed increased metal biomarkers of exposure levels in a group of 116 Quebec apprentice welders during a longitudinal follow-up of exposure. Analysis of 14 metals was carried out in hair, fingernail, and toenail samples taken from participants over the course of their welding curriculum at 6 different times. Personal and socio-demographic characteristics, lifestyle habits, and other potential confounding factors were documented by questionnaire. Multivariate linear mixed-effect models were used to assess main predictors of metal concentrations in each biological matrix including increasing time of exposure throughout the curriculum (defined as the repeated measure "time" variable"). Significant associations between repeated measure "time" variable and metal levels in hair, fingernails, and toenails were found for chromium, iron, manganese and nickel. Significant associations with "time" were also noted for arsenic levels in hair and fingernails, and for barium, cobalt and vanadium levels in fingernails and toenails. The repeated measure "time" variable, hence increasing time of exposure throughout the curriculum, was the predominant predictor of elevated biological metal levels. Reduced spaces and simultaneous activities such as oxyfuel-cutting and welding in the same welding room were suspected to contribute to higher metal levels. Age, ethnicity, and annual household income exerted an effect on metal levels and considered as confounders in the models. Variations observed in metal levels between hair and nails of apprentice welders also emphasized the relevance and importance of performing multi-matrix and multi-element biomonitoring to assess temporal variations in biological metal concentrations during welding curriculum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15287394.2024.2410283 | DOI Listing |
Nat Commun
December 2024
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.
View Article and Find Full Text PDFNat Commun
December 2024
Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Iron is a potent biochemical, and accurate homeostatic control is orchestrated by a network of interacting players at multiple levels. Although our understanding of organismal iron homeostasis has advanced, intracellular iron homeostasis is poorly understood, including coordination between organelles and iron export into the ER/Golgi. Here, we show that SLC39A13 (ZIP13), previously identified as a zinc transporter, promotes intracellular iron transport and reduces intracellular iron levels.
View Article and Find Full Text PDFNat Commun
December 2024
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian, China.
Highly efficient perovskite solar cells (PSCs) in the n-i-p structure have demonstrated limited operational lifetimes, primarily due to the layer-to-layer ion diffusion in the perovskite/doped hole-transport layer (HTL) heterojunction, leading to conductivity drop in HTL and component loss in perovskite. Herein, we introduce an ultrathin (~7 nm) p-type polymeric interlayer (D18) with excellent ion-blocking ability between perovskite and HTL to address these issues. The ultrathin D18 interlayer effectively inhibits the layer-to-layer diffusion of lithium, methylammonium, formamidium, and iodide ions.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.
View Article and Find Full Text PDFNat Commun
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
Carbon nanomaterials show outstanding promise as electrocatalysts for hydrogen peroxide (HO) synthesis via the two-electron oxygen reduction reaction. However, carbon-based electrocatalysts that are capable of generating HO at industrial-level current densities (>300 mA cm) with high selectivity and long-term stability remain to be discovered. Herein, few-layer boron nanosheets are in-situ introduced into a porous carbon matrix, creating a metal-free electrocatalyst (B-C) with HO production rates of industrial relevance in neutral or alkaline media.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!