Multi-target direction of arrival (DoA) estimation is an important and challenging task for sonar signal processing. In this study, we propose a method called learning direction of arrival with optimal transport (LOT) to accurately estimate the DoAs of multiple sources with a single deep model. We model the DoA estimation problem as a multi-label classification task and introduce an optimal transport (OT) loss based on the OT theory to capture the intrinsic continuity within the angular categories. We design a cost matrix for the OT loss in LOT approach to characterize the order and periodicity of the angular grid. The LOT approach encourages reliable predictions closer to the ground truth and suppresses spurious targets. We also propose a lightweight channel mask data augmentation module for deep models that use items related to the covariance matrix as input. The proposed methods can be seamlessly integrated with different model architectures and we indicate the portability with experiments on several typical network backbones. Experiments across various scenarios using different measurements show the effectiveness and robustness of our approaches. Results on SwellEx-96 experimental data demonstrate the practicality in real applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0030398 | DOI Listing |
Sensors (Basel)
January 2025
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
Frequency diversity array-multiple-input multiple-output (FDA-MIMO) radar realizes an angle- and range-dependent system model by adopting a slight frequency offset between adjacent transmitter sensors, thereby enabling potential target localization. This paper presents FDA-MIMO radar-based rapid target localization via the reduction dimension root reconstructed multiple signal classification (RDRR-MUSIC) algorithm. Firstly, we reconstruct the two-dimensional (2D)-MUSIC spatial spectrum function using the reconstructed steering vector, which involves no coupling of direction of arrival (DOA) and range.
View Article and Find Full Text PDFStem Cell Res Ther
January 2025
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting around 50 million people worldwide. Bone marrow-derived mesenchymal stem cells (BMMSCs) have emerged as a promising source for cellular therapy due to their ability to differentiate into multiple cell types and their paracrine effects. However, the direct injection of BMMSCs can lead to potential unpredictable impairments, prompting a renewed interest in their paracrine effects for AD treatment.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Center of Excellence for Veterinary Clinical Stem Cells and Bioengineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Background: Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) are recognized for their therapeutic potential in immune modulation and tissue repair, especially in veterinary medicine. This study introduces an innovative sequential stimulation (IVES) technique, involving low-oxygen gas mixture preconditioning using in vitro fertilization gas (IVFG) and direct current electrical stimulation (ES20), to enhance the anti-inflammatory properties of sEVs from canine adipose-derived MSCs (cAD-MSCs). Initial steps involved isolation and comprehensive characterization of cAD-MSCs, including morphology, gene expression, and differentiation potentials, alongside validation of the electrical stimulation protocol.
View Article and Find Full Text PDFVet Res
January 2025
Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
Porcine reproductive and respiratory syndrome virus (PRRSV) presents significant economic challenges to the global pork industry due to its ability to mutate rapidly. The current commercial vaccines have limited effectiveness, and there are strict restrictions on the use of antiviral chemical drugs. Therefore, it is urgent to identify new strategies for preventing and controlling PRRSV infections.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 61801.
Bacteria engage in surface-specific behaviors that are assumed to be driven by biological signaling. However, surface behaviors could be controlled by mechanical reorientation of bacterial appendages. Here, we use microfluidics and flagellar labeling to discover how shear force bends flagella to control surface behavior of the human pathogen .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!