A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In-Depth Chemical Analysis of the Brain Extracellular Space Using Microdialysis with Liquid Chromatography-Tandem Mass Spectrometry. | LitMetric

Metabolomic analysis of samples acquired from the brain extracellular space by microdialysis sampling can provide insights into chemical underpinnings of a given brain state and how it changes over time. Small sample volumes and low physiological concentrations have limited the identification of compounds from this compartment, so at present, we have scant knowledge of its composition. As a result, most measurements have limited depth of analysis. Here, we describe an approach to (1) identify hundreds of compounds in brain dialysate and (2) routinely detect many of these compounds in 5 μL microdialysis samples to enable deep monitoring of brain chemistry in time-resolved studies. Dialysate samples collected over 12 h were concentrated 10-fold and then analyzed using liquid chromatography with iterative tandem mass spectrometry (LC-MS/MS). Using this approach on dialysate from the rat striatum with both reversed-phase and hydrophilic interaction liquid chromatography yielded 479 unique compound identifications. 60% of the identified compounds could be detected in 5 μL of dialysate without further concentration using a single 20 min LC-MS analysis, showing that once identified, most compounds can be detected using small sample volumes and shorter analysis times compatible with routine monitoring. To detect more neurochemicals, LC-MS analysis of dialysate derivatized with light and isotopically labeled benzoyl chloride was employed. 872 nondegenerate benzoylated features were detected with this approach, including most small-molecule neurotransmitters and several metabolites involved in dopamine metabolism. This strategy allows deeper annotation of the brain extracellular space than previously possible and provides a launching point for defining the chemistry underlying brain states.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c03806DOI Listing

Publication Analysis

Top Keywords

brain extracellular
12
extracellular space
12
space microdialysis
8
mass spectrometry
8
small sample
8
sample volumes
8
liquid chromatography
8
identified compounds
8
compounds detected
8
lc-ms analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!