Myxococcus xanthus, a Gram-negative bacterium, has a complex life cycle that includes fruiting body formation. Frizzy (frz) mutants are unable to aggregate normally, instead forming frizzy filamentous aggregates. We have found that these mutants are defective in the control of cell reversal during gliding motility. Wild-type cells reverse their direction of gliding about every 6.8 min; net movement occurs since the interval between reversals can vary widely. The frzA-C, -E and -F mutants reverse their direction of movement very rarely, about once every 2 hr. These mutants cannot aggregate normally and give rise to frizzy filamentous colonies on fruiting agar or motility agar. In contrast, frzD mutants reverse their direction of movement very frequently, about once every 2.2 min; individual cells show little net movement and form smooth-edged "nonmotile" type colonies. Genetic analysis of the frzD locus shows that mutations in this locus can be dominant to the wild-type allele and that its gene product(s) must interact with the other frz gene products. Our results suggest that the frz genes are part of a system responsible for directed movement of this organism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC391518PMC
http://dx.doi.org/10.1073/pnas.82.24.8767DOI Listing

Publication Analysis

Top Keywords

reverse direction
12
myxococcus xanthus
8
reversal gliding
8
gliding motility
8
frizzy filamentous
8
net movement
8
mutants reverse
8
direction movement
8
gene products
8
mutants
5

Similar Publications

Polymer material innovations for a green hydrogen economy.

Chem Commun (Camb)

January 2025

Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.

Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.

View Article and Find Full Text PDF

The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).

View Article and Find Full Text PDF

Miniaturized inertial sensor based on high-resolution dual atom interferometry.

Rev Sci Instrum

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.

View Article and Find Full Text PDF

Magnetophononics and the chiral phonon misnomer.

PNAS Nexus

January 2025

The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.

The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.

View Article and Find Full Text PDF

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!